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buffer, plus successive demands, applies to the second buffer until one occurs that exceeds the
remaining capacity. This demand then applies to the third buffer, and so on. As a result there
will be some unused capacity in each buffer. For a similar problem see the paper of Coffman,
tlofri, and So [21. For related, although not identical formulations, see Cohen [31, Gavish and
Schweitzer [6). and llokstad 17].

In Section 2 we will discuss some models for the situations in Examples (a) and (b). We
compute such items as the distribution of the amount of inventory left at some time t and the
distribution of the times of successive unsatisfied demands.

In Section 3 we next consider a model for Example (c), and derive equations for the lim-
iting distribution of used capacity of a buffer and the expected used capacity of a buffer. It
seems to be difficult to obtain simple analytic solutions to these equations, but certain illustra-
tive numerical results are provided.

2. THE ONE-BUFFER INVENTORY PROBLEM

Suppose that demands for available stock occur according to a compound Poisson process:
if N, is the number of demands that occur in (0. t], then IN,-t >, 0 is a stationary Poisson
process with rate X- the sizes of successive demands {D,} are independent with common distri-
bution F. Assume that there are no replenishments of inventory. Let I/,. t > 01 denote the
stochastic process describing available inventory at time t, and let 1(1); n = 0, 1 .... ) be the
stochastic process of available inventory following the nth demand. It is apparent from our
assumptions that both [I,) and I1(l)) are Markov processes.

2.1 Functional Equations for the Amount of Available Inventory

Let

(2.1) ((s.,t) = El ]

be the Laplace transform of the available inventory at time t. Similarly, let

1,(s,n) = El ""T.

Properties of the available inventory can be studied in terms of 0 and (b. It may be shown by
using conditional expectations that 0 satisfies the following differential equation.

(2.2) a _= xEI, ' (e"- I) F(dx).

Further, 4, satisfies the following difference equation

(2.3) ,. ,, + ) (s. n + [c 1 "" ' f (c" - I F(d ).

I)ifferentiation with respect to s at s = 0, or a direct conditional probability argument, now pro-
duce equations lor EI, I and F1(,)1:

(2.4) FEl /, I E Ijfl F(dd)

and

!l/'(t + IIl = E 1(n)1- E f , v t(d" ) I.

In general, no explicit solutions for the expected values are available, but a simple lower
hound results from rcriing (2.4) as follows
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(2.5) t E , ,E , FGA-)

> -A Ell, FU/,)]

> -xF() Ell,].

from which one sees that

(2.6) E[I,] > I exp I-XF(I),t

and similarly
E1I(001 > /[I - F(1)],

so the expected available inventory declines by at most an exponential rate.

2.2. Explicit Solution When the Demand Distribution is Uniform

Although Equation (2.2) seems to be quite intractable for most demand distributions, it
can be solved completely when Fis uniform:

0

and c >, I. In this case (2.2) can be expressed as

(2.7) 1.- f ) 

tt C -

, "{'I ( ' I
(' C c a

In other words, (h satisfies a first-order (quasi) linear partial differential equation with ini-
tial condition O(s. 0) = , ". Standard procedures (Sneddon [8]) easily yield the solution

(2.8) 1 - b(s.) = I - exp I-(s 4- (/c)IA

which gives the desired transform. Passage to the limit as s - 0 in (2.8) shows that
(2.9) l= - CXp [-(AuI]

This formula can also he derived by first Iinding an expression for the ktl moment of 1,, and
then employing a Taylor series argument.

In order to invert the transform in (2.8) note that

(21)) I - (sj) I cxp[ -1% + (Ae, ))(2 0 ) c' " P I > (Ad . . ... . . ..
.% + (A/c')t

which is the transform of a truncated exponential distribution. Thus, by the unicity theorem
for Laplace transforms,
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j cx l (X l(')\] ) < .* <1I.

(2.11) I'{ > \< = 0 / '< x.

Note that [he distribution of I is absolutely continuous in the interval (0. 1) but that there is a
jump at I corresponding to the occurrence of no demand less than, or equal to. I in (0. tI:

(2.12) P19, = 1 = expl-(I/,')].

2.3. The Fxpected Number of Satisfied Demands

Supposing that an initial inventory, or storage capacity, I prevails, it is of interest to com-
pute the probability that a demand is satisfied, and the expected number of demands satisfied in
an inter\al of length i First notice that if a demand of size D(,) appears at time t, at which
moment . is avaflable. then

I'll)(1) < I01, = f:'(,)

in the conditional probability that the demand is satisfied. Wherl F is uniform, as is presently
true, we ma\ remove the condition to find that

If St) is the number of denands satisfied during the time interval (0. t], then since demands
arri,,c according to a Poisson process with rate X,

(2.13) !I.i = Af '[/:(I)]dtu = -/c)/1 du

+ + ElJ±Fi

where El (-) is an exponential integral: Abramowit, and Stegun [11, and y = 0.5 112 ... is
Euler's constant.

2.4 The Time of the First Unsatisfied Demand and the Amount
of Unused Inventory at that Time

As before f'is the common distribution function of the successive demands. Now let r
be the time of the first unsatisfied demand. Then

P(T > tI. = Ill- PID1 < 1, D,< I- DI, ..... D,,< I- D -....- D,,"

where F" denotes the nth convolution of F with itself'. Hence,

(2.14) tPIr > t = (I)

Fxplicit expressions for the distribution of r can be obtained in some cases. If F is ui-
form on 10. ( I with , I, then

(2 1 i1 P17- > t} 1 "12 t2 1''
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where 1(1(z) is a modified Bessel function of the first kind of the zeroth order. In this case,

(2.16) E[r] = exp{I/c} = lexp(I/2E[Di).

If Fis exponential with mean 1/t, then
(2.17) P(" > ,)= , , " I_

,,-0 n! -,,e k!

and

(2.18) EIrl= [!+l= [I + I +.

Note that if I is small relative to E[D], then the expected time to first unsatisfied demand
when F is exponential will be greater than the expected time when F is uniform. However, for
I large relative to EID] the expected time for Fexponential will be less than the expected time
when Fis uniform.

Let Y,, be the amount of inventory present at the time of the nth unsatisfied demand.
Then for 0 < a < I

(2.19)P{ Y > I!- a})J R (dv) F(I -.0)

where

(2.20) R(y)= F1' (Y )

and

(2.21) F(i- y) = i - F(I - y).

Again, explicit expressions for the distribution of Yj can be obtained for some distribu-
tions F. If Fis uniform on 10. c] for c > , then

(2.22) P( Yj > -a) = I1- exp I a~

If F is a truncated exponential

I - .

(2.23) F(x) = x I.

then

(2.24) P{Y I- a =I- [ea')e t i -Iv I c xp {ua[I - eI.

If Fhas an exponential distribution with mean I/A. then

(2.25) PI Y, > / - a = e' 1 ,,.

In this last case, the distribution function of Y, can he computed by induction quite easily and

(2.26) P1 - I- Y,= > a)_ v

'K1i, -"

~ 4 Th
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Hence, when Fis exponential
(2.27) E[ Y,,I - - [1 - e-".

nfL

In principle, similar results can be obtained for other distributions, but we have found no sim-
ple expressions.

2.5. Inventory Costs and Policies

There are at least three monetary quantities which affect the profitability of an inventory
policy over a fixed interval of time (0, t]: the selling price, p, the storage cost, a; and the cost
of lost demands, b. If the storage cost a is charged just on the basis of I (something like ware-
house size) then the total expected profit in (0,t] is

Z(I) - p(I - Eli,]) - al - bS()

- (p - a)! - p Hi - exp[-(\0/111

~~b~v+In I A-d+i[ i

for the case of uniformly distributed demands; see ((2.9) and (2.13)). One can numerically
find the maximum expected profit for this case; nothing explicit seems to be available.

3. THE MANY-BUFFER STORAGE PROBLEM

In this section we will study a model for the situation of Example (c) in Section 1. Mes-
sages are successively admitted to the nth buffer until there is a message length that exceeds
the remaining capacity of the buffer. The total amount of this message is put in the (n + l)st
buffer and the nth buffer is left forever. Successive messages are then put in the (n + 1) st
buffer until there is a message whose length exceeds the remaining capacity of the (n + 1) st
buffer- this message is put in the (n + 2)nd buffer and so on.

Let I denote the common capacity of the buffers and D, denote the length of message i.
Assume (DI is a sequence of independent identically distributed random variables with distri-

bution F having a density function f such that f(x) > d > 0 for x E [0, /1. Let R(x) - I
"--0

F " (x) be the renewal function associated with F. If F(I) < I, then we will assume that an
incoming message to the currently used nth buffer of length greater than I is sent to the
(n + I)st buffer; when it cannot fit into the (n + l)st buffer, then it is "banished," i.e., sent to
some other set of buffers. The next message, however, will try to enter the (n + l)st buffer.
If this message has length greater than I it is banished and the following message will try to
enter the (n + 1)st buffer; all messages of length exceeding / will be banished until one appears
that is smaller than /and it will be the first entry in buffer (n + I).

This model has been studied for demand distributions Fwith F(I) - I by Coffman et al.
121. Their approach was to study the Markov process describing the total amount of inventory
or space consumed in successive buffers or bins. Here we study the process (LJ, where L, is
the size of the demand that first exceeds the remaining capacity of the nth buffer;
L, n - 1,2. ... ) is a Markov process. Let

K(x. [0.vl) - P(L 4 , yIL, - x).
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Note that

P{(L, y K (0, 10, y 1)

is the same as the sum of the forward and backward recurrence times at time f For a temporal
renewal process with interrenewal distribution , see Feller [5). Thus for y < /

(3.1) H(Y) =P L ( y} = . R(dz) IF(Y) - F(I- -).

Note that for y < I

l R(dz) O () -F(I - - -)1
if.,, < / -y

, R d) ["(y) - .f -

(3.2) Ai0, [0. yi)= if I - < . < I

R Wt- [t.(y)-!.(/ -- 1 fl

if-x> .

Hence.

[RI -. \) - R - yx -. |) (dv) if-x < I -
R I - \)"(v) it' / > .\ > /I v

(3.3) Kx. dv) = (U) f"(d') - R(d:) I/(v - 4 ± Rld(it)
if \ = / - .

[Rl) - R(I- y) GIvy if*x > /.

Note that for some 0 < a < h < 1, there exists a 8 > 0 such that for all x

K.'(,v.dv I > for v C [a. hI

where K(.\. div) f A (-. d:) K (z. dv). I lence, hypothesis )' on page 197 of l)oob [41 is
satisfied. Thus, if

A"x. A)= P11,,, E .1I1.1= 0

for all Borel subsets , then

(3 4) lim K"(x,,. ) = 1 .)

cssts and further the conergence is geometric

A-,(,,.) -- It( -) 1 <-i a ,

for some positioe constants a and y, y < I for all .1.

Nov lcl

Hl'(0 : IV , ( it), \I!l I- 1}

Then a renewal *rgunctlt can he used 1o slIos, , that for s I

(35) Jf.,.jl\ I , - I !h 1<, l ~
( 11 I. 1 ,i ) t ll I ) IlI ) ]
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Taking limits as ii -. it is seen that the distribution 11(x) satisfies the following equation for

(3.6) 1(.v) = H - R(gv) [Fx) - F(I -- 0

+ [1 -H(I)f R(dy) [F(x) - F(I - y).

Equations (3.1) and (3.6) can be simplified for certain specific distributions F.

3.1 Exponential Demands

F'or the exponential distribution with mean I and x < / the equations are

(3.7) (x) = I- e xe

and

(3.8) ./1(x) xc( ) + HI(x) - e ' H(I - x 4 u) du.

3.2 Uniform Demands

For the uniform distribution on [0. cI with c > / they simplify to

(3.9) /111(.) = exp (i - .) -.0 - exp J
and

(3.10) Mll0 = -t..Iext) I (1 0) exp U ll(Odu

+ -e- tt(I - - exp U (u) duI , 1 1 - X 1 I

+ . //(I)] . i-i ,

text.

Equations (36), (3.8) and (3.10) do not seem to yield explicit answers. As a result, we
have solved (3.8) and (3.10) numerically by iteration using the system of equations

13 11) //,,,1(.\) = .e '11,,1 + Il1(x) - ' x t,(1 -. x + )du

with il as in (3.7) and

(3 12) //,,..1 ( exp 1 - .01 exp U-- Il/,,(u)du

+ I,,11(1) - exp - ) exp c U ,(uJ di

II - XI(1)1 I-(x)

with /11 as in (3.9) For the cases carried out the convergence is rapid; after n = 5 iterations.
,er little change is noted and convergence has occurred for most practical purposes.
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Next let h, e t he 11m11.1nt Of' torage space 1.s1ed in thle nth hill tile distribution Of Y, is
denoted by G,(.0, and

6(v)l lint Pt . lint G;, )

is the long-run distributlion. B\ probaibilistic areum11C nts ad (3 4)

(3.13) G (.x = f I / Rik) /1(/ - i) 4- 11 -- MW1) flRWYM)Il -- J)

where h- I - Y) I - LI - Y)I and thIe long-] unl average expected catpacit\ of' a binl that is
aiCtually used is

For the case in which I is expoirentiat \kith unit mean

(3.14) A1 I / I ///I [I ' I c c, W \S/.

For the case in which I IN~ 1,11110rit1 onl 10. 1 "ith c /

(O.S) A = - 21 1I111i(1c1i c\11 11 f expL u Ilj H /ii

Numerical solutions %%ere obtainedk for I ti~onS (.114) and (3.15) b\ first computing the pro-
babilitics HI, IA\). ii 1. 2. l.it iteraiiiiel front 13,71 )and 13.1) ) for thle exponential
denriand case, and fronti 13.) i (3. 12) lir thle case ol u niform demands. O ur tchlnique wats
sirnpl\ to discretiie .\ .\ I I, ii = N being thle 1nmber of' -valles at which /1,, ( v is
exalluated (values ofl A from 200)- 1200) "ere ntiliiedI iii order to obtain tWO-Signifiant digit accu-
rac\ ). Phc integrals \&ere then ilijT'IIixmIted h ' a sUmlIIiatOm. i.e. Simpson's rule. Having the
vialues iof' 1/,A) it is possible tic calcuktlathiise of' // . j( v ),and fromn these tile values of
G,:(A \ antid thle meanIl uIsageC.I 1 I1 I. iJr he iAcalculated h\i lnmerical integration. Inl the ease ot'
exponential demand very, simle upper)C ad lcc IMCr bounds were- rtibtainable., Such bounds were
not tight1 entiuLglr tli be sefu*lI for theC nirlit*(l case.

Ihle followinig taible so or m art1l/es tilie no m1C neal reCsulS. We have com pared demand distri-
butions that reslt - ais nearlk is piossihle. in the sanie priahilit ' that an initial demand onl an
etmpty binl will be rejected We 11,1\ e tabulatd the sp)eted Ics el to which the bin is tilled. It
is interesting tha thei muigbt ocpnxi i e uniform demland over the ranlge(f

the binl si/c is experienced [hits reSnlt lis beenI obroncd ;itralx tteallvh bk (otIman el t) 2) 21 in
that paper simple ind leant i L~kI teal rCsSIlcii- Ir M anMd /1IN alc par for this case. Th le
considerable sinutlirit% Mc Itic itiries ill the Mc ill( t he bei, niotable. apparently thle long-
run binl iccuparrex is ()ill\ slightls larger tlint Is that1 Or the first bitt, and tite ccccupanlcv experi-
enced for uniform demand is ucit ih thI11 1,ar9er t1, fill tccr Xpcnentiat Further linvestigatitins to
examine the reasons cci this miserisIict-I wictillk C~l 1 tIe of) IiCNe

A(KNO"4.I111IXFN PS

ID P ( taIxcr 'ihA 'jc kiccll i d,- ihc1) lcspciahi\ ofithe Stitistics Dlmprttrent. I. 'imersit

ci O ctrrirf.'f'i I ori citri itci ii. cc c-, .ci plcc ,i esscct kliitiiti (lie jinttt r ( f 1) 77i . .111(
Whtere partl (if 1111s wIcik is 1 ki I llc
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Expected Fraction of Bin Filled
(j, = E[Y,,] I !)

Rejection Probability Exponential Demand Uniform Demand
Fm() .f .f .' 100

0.00 - - 0.76 0.75
0.05 0.74 0.75 0.74 0.74

0.10 0.69 0.70 0.72 0.72
0.15 0.65 0.66 0.68 0.69
0.20 0.60 0.62 064 0.66
0.25 0.56 0.58 0.60 0.62
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I. INTRODUCTION

Predicting the reliability of a system or piece of equipment during its development process
is an important practical problem. Reliability standards are often a major issue in the develop-
ment of transportation facilities, military systems, and communication networks. For commer-
cial products that are to be leased and maintained in a competitive marketplace, system reliabil-
ity estimates strongly influence predicted profitability and customer acceptance. When consider-
ing a system that is modified in response to observed failures, most classical statistical estima-
tion techniques are not applicable. This is because the system reliability is improving with time,
while most statistical techniques require repeated samples under identical conditions.

A frequently used graphical model of reliability growth of repairable systems is known as
"Duane Plots," proposed by J. T. Duane 19]. This model is based on the empirical observation
that, for many large systems undergoing a reliability improvement program, a plot of cumula-
tive failure rate versus cumulative test time closely follows a straight line on log-log paper.
Several recent papers present applications of Duane plots, e.g., 141, 19] and 110]. Estimating
the parameters of the Duane model, i.e., the slope and intercept of the straight line lit, is some-
what difficult to do directly on the graph 151. Weighted least squares and regression techniques
are sometimes used (191, [101) to obtain parameter values.

An underlying probabilistic failure model that is consistent with the )uane reliability
model is the nonhomogeneous Poisson process (NIIPP) whose intensity is total test time raised
to some power. (See 171 and (81). Assuming the sample data consists of all the individual
failure times, Crow 171 derived maximum likelihood estimates for the Duane model parameters
and a goodness-of-fit test based on the Cramer-von Mises statistic (Parzen 112, p. 1431). A
more general NIIPP model was proposed by Ascher and Feingold IlI, which also used

*Now wiih )epi iii to.fngieering I ci i oIIIII " S s ms, SiIIIiitl I li1%C 111%. ,Imil"m, Id. (

531)
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the Cramer-von , . statistic (or goodness-of-lit testing. Critical values of this statistic, how-
ever, must be obtained by Monte Carlo simulation for each sample size. Crow 17, p. 4031 cal-
culated and tabulated values for sample sizes up to sixty. These parameter estimates and
goodness-of-tit test deal effectivelv with Duane model applications having small sample siies.
The (acts that all failure times must be stored and the goodness-of-lit measure must be
evaluated by simulation make this approach difficult for larger sample sizes. A recent paper b%
Singpurwalla 1131 proposes a time series model for reliability dynamics. This model can. ot,
course, be applied to ain\ type of reliibility trend data, but requires data tabulation at a larger
number of time stages and does not have the intuitive appeal of the Poisson process for model-
ing failure occurrenc.es in certain systems.

Our paper develops statistical estimators for the I)uane model parameters based on tabu-
lating the number of failures between fixed points in tme. This approach has the advantage of
usinrg "suIllicicit statistics" (or tile data collection, i.e., the dimension of the data does 1i0t
increase %ith sample site Parameter estimates are obtained by maximum likelihood and a
goodriess-otf-tit test based on the Fisher chi-square statistic is derived. This test has lie advan-
tage thai chi-square tables are readily available for all sample siies and signilicance levels. The
accurac - of the chi-square test decreases, however, as tile saniple size gets small. Sample sites
for which tile techiICques of this paper apply are found in developmental systems that experi-
ence frequent, tmor failures such as paper jams in photo cops machines, voltage fluctuations
ill power suppl.,, s\sterns, fIaults in semiconductor narlui'acturing processes, etc. The last sec-
tion of this paper illustrates the application of the estimation and goodness-of-bit techniques to a
representatik e set ol siiulamed failure data.

Regardless of how the parameters of the Duane model are obtained, considerable caution
is required when e\trapolating reliability trends beyond the observed data to future time points.
Major breakthroughs or setbacks in the reliability improvement program may cause signiticant
deviations from the straight line projections. Some users recommend reinitializing the model
and shifting to a new straight line lit when major changes in the program occur. Even if one is
uneasy about extrapolating tie reliability growth model to estimate future reliability, it remains
a valuable tool for obtaining a "smoothed" estimate of current systen reliability. While reliabil-
it\ is changing, sample sites at any point in time are riot sufficient for conventional statistical
estimation techniques. With a dynamic reliability model, past and current failure data can be
combined to obtain estimates of current reliability based on filting all observed data.

2. THE DUANE MODEL

The Duane model states that cumulative failure rate versus cumulative test time, when
plotted on log-log paper, ollows approximately a straight line. More precisely, if we let ,'(0,t)
represent the total number of failures observed up to time t, we have that

(2.1) logl (0.t)/rt : - h log, -+ a,

where the ittedt parameters are a, h > 0. The relationship is meaningless at t = 0 but, as most
users potit out (51,191), a certain amount (f early data is generally excluded from tile lit
because It is influenced by factors such as training of personnel, changes in test procedures. etc
iFquaitl (2.1) thereforc implies that

j )/ t- ,in ', where a = log a,

Ior t be ond a certain point It should be emphasized that, in all applications, time t
corresponds to cliulative operating time nr test time For the results of this paper it is most
cmonvenielt to % rite the I)uane niodel as:

(2 2) \ i ) at" , where /3 = I h.
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For a fairly diverse set of observed systems, Codier 15, p. 4601 has found h to be generally
between 0.3 and 0.5, corresponding to g. between 0.5 and 0.7.

3. AN UNDERLYING STATISTICAL MODEL

In this section we describe a statistical model for the failure process that is consistent with
assuming that the observed failure data fits the Duane model. Suppose the probability that the
system fails at time t (strictly speaking in a small interval [t.t + di), regardless of the past, is
determined by a hazard function h(t). That is,

h(I)dI = P the system fails in the intervalki., + d)1.

independent of its previous failure and repair history. The expected number of failures in any
time interval 1tj.t,) of operating time is then given by the mean value function

(3.1) Ml(,, t) = f I ()di.

Furthermore, it can be shown (See Parzen [12, Sect. 4.2]) that N(01. I,). the number of
failures observed in some future time interval It, tI,), has probability distribution

(3.2) P[NI(tl.i?) = k) = (IAl(IB. ,flk)/A!) exp{-.1I(/.tfl A = 0.1. 2.

In addition to its mathematical convenience, this model has considerable intuitive appeal. The
simple Poisson process has been used successfully to model the failure occurrences of' man,
devices, or collections of devices operating in series. One may think of a system having a
nonhomogeneous Poisson failure process as a large collection of simpler devices in series, with
individual device failure modes being gradually removed with time.

The mean value function

(3.3) Ai0 1, . ) = a(t - Il ). where a, f3 > 0:

corresponding to ht(t) = aI3i" ', is of particular interest. Crow [7, p. 4051 pointed out that the
number of failures from a process with this mean value function will approximate the I)uane
Model by observing that

log1M(tl/ = log ( + (J3 - I) log I. where A10) = 1(0. t).

This means that system failure data from a NliPP with mean value function A1() will approach
the Duane model with probability one. Conversely, this process with mean value function
M() is the only model with independent increments that approximates t he I)uane model in a
p.obabilistic sense for sufficiently large sample sizes. We will not give a proof of' these state-
ments but refer the reader to Parzen 112, ch. 41 or Donelson [1 for a complete dicussion.

4. SELECTING A STARTING TIME

The )uane reliability model and the expected number of failies in I qualion (3 3) are
both nonlinearly dependent on the choice of the time origin. That is, if we begin observing
failures at time t = ,i > 0 and ignore the first N (0. I,) failures and the time inter l 10. t,,). we
do not obtain the same parameters a and 13 by fitting the subsequent data. Since the logarithm
is a strictly concave function, there is only one choice of /, that can give a straight Iile lit to the
data on log-log paper. Specifying the operating time 1, that is assulled to have elapsed before
the beginning of the modeling process is therefore an inporant stelp.

Some users of the I)uane Model (151,1101) suggest reducing the cumul;li e failures and
observation time by removing early data to obtain a straight line fit. I hi,, is done graphicalkl, h



. .. : .. l g tyhe data until a straight line fit is
ac ,-I lie gi aph of cumulative failures versus

' * ,ri% Aid h iltJing (concave). so it is not hard to

1C iticod i'n log-log paper is observed before the noisy
S, ited further to the right, the straight line shape will

' , , . I. u ii i th a n he said in this case is that, for t greater than
... w,, del I lie -,ans ical model (3.3) can still be applied, how-

".llh 'i t tiilurcS \ it it) after the first N(0,,1 ) fit the NItPP
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It he I O L d.'- 1( .i l1lCd graphicallv,, the user can attempt to estimate the parameters
( i Mid i h'. dr.~l k 01C hC N tie s, raight line ihrough the plotted points. This is somewhat tricky
because. " iL 1uniuli1i\C failure data. the later points should be weighted more heavily in
determining (he fit This section describes a statistical estimation procedure based on the
N|IPP model of the failure process. We consider two possibilities for collecting and recording
system failure times. The first is to record the occurrence time of each failure, which yields a
sequence of observed times TI, 7', . T.... T\. This case has been analyzed by Crow in 171 and
the maximum likelihood estimates are given by

(5.1) k * = \/1 "

and

(5.2) = -N/ , log( ,/T\).
' I

A goodness-of-lit test corresponding to these estimators is derived in [7] and critical values of
the error statistic are tabulated for sample sizes 2-60.

If large numbers of failures are observed, it is often convenient to record only the aggre-
gate number of failures between each pair in a sequence of fixed time points o., .... -,I. In
this case the data is in the form N1, N, ..... N,,, where N, = number of failures observed in
the interval It, . t,). Maximum likelihood estimates and a goodness-of-fit criterion for obser-
vations in this form are developed in the next few paragraphs.

Maximum Likelihood Estimates for the Aggregated Case

We first calculat, the likelihood function for the data N1, N..., N,,, given the time
points t,), it, .... ,, and the assumed form of the mean value function in Equation (3.3). The
probability of N, system failures in the interval It, 1, t,) is obtained from Equation (3.2). Since
the underlying model assumes that each of the time segments is independent, the likelihood
function can be written as a product of these probabilities,

(5.3) 1.(,1) Jjf PI ( , , 1, t) = N, = expi-M (,.t,,)) II ([M( , i, t)] 'N,).

To simplify the calculation of the estimators, we take the log of L (, t). noting that max-
imizing the log will yield the same maximum likelihood estimates. From (5.3) we have

(5.4) fog .G, /3) - , - ) + N,[Iog,, + log 0 t - i, 1 - Ilog N,!.
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Taking the partial derivatives (log L )/a = 0 and (6log i. )/a/3 = 0, we obtain the equations
for the maximum likelihood estimates,

(5.5) a - N/(I, - t). where N= N

(5.6) 0 N, log t, - p, log t, I log ,, - /log 1

where

= ( /t,)° i = 1. 2. n, and p (to/tK

Equation (5.6) is an implicit function of 13, but can be solved iteratively by a computer algo-
rithm or programmable calculator, because the right hand side is strictly decreasing in 3 *. To
verify this fact, consider any two times i. i' and compute the derivative

(5.7) (0/O0(logt - Tlog t'/[Il - T1 '-(l(og TY/(I - i.1: where T= t/t'.

This derivative is negative and decreasing in T for 0 < 1'. /3 < I. The derivative of the sum in
(5.6) is a sum of terms involving the difference of the derivative (5.7) evaluated at 7" - t, 1it
and to/t,. The fact that (5.6) is decreasing in (3 * follows from the fact that (5.7) is decreasing
in T, i.e., its largest or least negative value occurs at 7'= i,/..Therefore , (5.6) has a unique
solution.

6. GOODNESS-OF-FIT CRITERION

This section describes a procedure for testing the goodness-ol-lit of the observed failure
data to the NIIPP. We assume that the parameters av * and (3 * are obtained from the maximum
likelihood estimates (5.5) and (5.6). From the form of (5.5), it is clear that the estimate W is
defined in such a way that the total number of observed failures N always equals the expected
number of failures for the time period It,. t,,). That is, t * is defined so that

N = EMINv,, f*a = ,r a t(').

Therefore, there is no difference between the observed versus predicted total number of
failures. The goodness-of-fit measure must therefore be based on tile differences between tle
observed incremental failures N1. N, ..... N,,, and the predicted values

(6.1) EIN,Iar *. 3*1 = (/*( - t =. 1 .2 .. .n.

Assuming the estimate (5.5) is used for av *, the likelihood function for a goodness-ol-lit
statistic will he expressed only in terms of' 3 . Since the Nil'I has independent increment,.
the probability that a given failure occurs in the interval It, . t) is the e spected number ol
failures for that interval, divided by the total number of failures, This is written as
(6.2) p, = 11,('8 *)  = 6 °(t'11" -  1"1" )1/1(, - 0" t, l 1= 1, 2 . ... Pi.

where the t* parameter obviously cancels out. The likelihood function for a set of observed
failures N, N,, N,, given N, is therefore the multinomial

N'" N ....... 1 P P?' " ,  . where N + N ... + V.. N

which depends only on 3 3. The parameter v *can be regarded as a scale parameter that guaran-
tees the model will fit the total number observed of failures \
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We now show how the gooaness-of-fit of the incremental failure data can be measured by
the Fisher chi-square statistic

(6.4) A'= ,- Np,)2/Np,.

The use of this statistic as a goodness-of-fit measure is based on the following theorem, which
has been restated in the context of this discussion.

THEOREM (,.1: L.et the parameters pl, p2 .... p,. with ,p, = 1, be functions of a param-
eter (3 and let a particular value (3' be determined from

(6.5) (0 = (,/p)(6p,/3)

Then the statistic (6.4) with p, = p, (3'), i 1, 2,.... n, has approximately a chi-square distri-
bution with ,I - I degrees of freedom (x"(n - I1) for large N. The proof of this result is quite
lengthy and can be found in 16, pp. 424-4341.

ro apply this result to our particular problem, we must show that 13' equals the estimator
(3 defined by Equation (5.6). Using p,(13 ) as defined in Equation (6.2), and differentiating
with respect to (3, one can verify that Equation (6.5) reduces to Equation (5.6). Thus, (3' = 3'
and, since (5.6) has only one solution, the value is unique.

The chi-square error statistic (6.4) has an additional intuitive interpretation ['or this appli-
cation. Suppose a and , are the "true" parameters of the underlying nohomogeneous Poisson
process, i.e., the values to which the estimators t * and (3 * must eventually converge for very
large sample sizes. Then the "true" variance of the number of observed failures in It, ,. 1).
i.e., the limiting value for the sample variance of a large number of observations, is given by

\'arlN. (./3}= (t 3 i - t,') j= 1. 2. n.

Consider lIla . 13) = (N, - E(NIja }'K/Var{,,ia. (31.

which is the sum of square errors between the observed and estimated failures, weighted by the
true %.ariane for each of the time intervals. Suppose we minimize this with respect to t . and
J3* b -,oltg It ;)a"*) * 0 and (a W/*3 ) = 0. If we then substitute our "best estimates".
a * Ior a and (3 (or (3, ihese two equations reduce to the maximum likelihood equations, (5.5)
and (S 6). respecti\,ek , Ilirnbaum [2. p. 251-21 also points that if we minimize the chi-square
statistic (6.4) ,ith respect to (3, the estimate obtained must approach the estimate (3' that
satisfies (6 5) as the sample size approaches infinity.

This goodness-of-fit criterion measures, in effect, how well the observed data (its a NItPP
with mean value function Al0), where 13 ° is the "best" growth parameter for the observed data
If the %:(n - II statistic (6.4) exceeds the critical value at a reasonable significance level, such
as 0.05 or 0.1, the model should be rejected. Since Theorem 6.1 gives only an asymptotic
result, it is important to discuss the sample size requirements for applying it. Given the popu-
larity of' this test, there has been considerable experience with various types of data A com-
mon criterion is that N and, in this case the time points t,. t t must be such that
Np > 10 for all i. (Sec Birnbaum 12, p. 2481).
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7. APPLICATION EXAMPLE

As an illustration, we will determine the estimators r * and /3 * and apply tIle goodness-of-
fit test to the sample data in Table I. We assume that the failures of the system were only
monitored at fixed points of time so that the observed data consists of tile lirst two columns of
the table. These data points were generated by computer simulation with failures sampled from
a NHPP with mean value function M(t), having parameters (v = 10.0, 9 = (.5. Failure times
TI, T,, ... from this distribution can be generated sequentially from a set of random samples
U1, U,. from the uniform distribution by means of the transformation

(7.1) = T,3 - (1/a) log U,+ 1.I' , To = 0, i = 0. 1. 2.

TABLE I

Time Interval Observed Predicted Standard Normalized

Failures Failures 1)eviation Error
1 400 - 800 63 78 8.8 2.88
2 800- 1200 63 61 7.8 0).07
3 1200- 1600 54 51 7.1 0.18
4 1600 - 2000 51 46 6.8 (.54
5 2000 - 2500 68 51 7.1 5.67
6 2500 - 3000 49 46 6.8 0.20
7 3000 - 3500 34 43 6.6 1.88
8 3500 - 4000 39 40 6.3 (.03
9 4000 '- 4500 39 38 6.2 ).02

10 4500 - 5000 43 36 6.0 1.36
II 5000 - 5500 39 34 5.8 0.74
12 5500- 6000 36 33 5.7 (.27
13 6000- 6500 28 31 5.6 0.29
14 6500- 7000 22 3(1 5.5 2.13
15 7000- 7500 35 29 5.4 1.24
16 7500 - 8000 32 28 5.3 0.57
17 8000 - 8500 22 27 5.2 0.93
I18 8500- 9000 19 27 5.2 2.37
19 9000 - 9500 19 26 51 1.88

23 25

The data in -able I was used to obtain maxinur likelihood esti males o and 13 frioim
Equations (5.5) and (5.6). This was done by calculating \arious salues of' the right hand side
of (5.6) as a function of'/ until the minimizing value /3 * as determined to t%% deciial place"
This gave 13 = 0 .52 and * = 7.97, where ( was detcrmincd from (5.5) \lh /3" = 0 2

Ihe accuracy of 3 *is reasonably clos: to the correct ,alue J = 1)5. hut tie C-1tialc of)
is otT b more than 20"/o. Other calculations with different sels of random number, produced
errors in both directions but generally resulted in an ik * error se.cral lncs largcr than the /1 *
error, on a percentage basis. This seems to indicate (hat (lie i, more likch to estimale slopc,
of the D)uane Plot lines accurately than to estimate the Intercepts acCLiratc\ %%t)h IhC mintinLtll
likelihood estimates Naturally, as the number of obser\alnon polnts it Iable I is increased.
the estimates become more accurate. Accuracy sis nol ilIpro)eCd nucth h\ h'ilcreitg the

number of time points from 20. as shown in the table. to 11( and the sigt of thc error lot a
given example general> did not change as tlie num hcr (if ibser alioi pot11s Aas itcreascd.

6-A
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while holding tile underlying failure points fixed. Bringing the estimate t to within 5% of the
correct value typically required 300 to 500 observation time points for the computed examples.

To illustrate the use of the goodness-of-fit test we calculate the chi-square statistic (6.41
for this table. The "Predicted Failures" between the various time points are given by

Vp, = t ¢*(t!* - t,"'), i = 1.2 . ... 19.

The normalized error terms as in (6,4) are given by

S,\ - Vp. :/( Np ).

The sun of these errors, when compared with a X:(18) error table, is less than the critical
values 25.99 and 28.87, associated with significance levels 0.1 and 0.05, respectively.

For many applications of the model it is more important to predict the number of failures

that will occur in the next time period than ko obtain accurate estimates for a and /3. In such
cases the estimators obtained froni 10-20 time points appear to he suflicientl. accurate. This is
because there is a range of t, /3 pairs that provide almost as good a fit to the observed data as
the optimal ones and any parameters in this range provide a satisfactor predictive model.

To illustrate the prediction accuracy of the estimates (3 = 0.52, a * = 7.97 obtained from
Table 1, we generated simulated failures out to 40,000 time units. The number of failures
predicted by extrapolating with the estimated parameters and with the true parameters are com-
pared in Table 2. The errors in predicting failures caused by inaccuracy in estimating the
parameters is much less than the random errors that occur do 1 ,tochastic variations of the
failure process. This was found to be the case in several sim ar experiments.

TABILE 2

ter~al Simulated Estimated True Standard
Failures Extrapolation Extrapolation )eviation

950)- I .000 24 25 25 5.0
9 5)0 - 15.000 235 251 250 1 5 8
9500 - 21).000 412 443 43) 21 0
9 500 - 310 , )00 7 15 7 6t 75 7 2 " 7 5
9500 - 40000 999 1041 1025 32 0

HA. ('(N&IUSI(ON

Choosing the fixed time points between which to tabulate failures is mainly a question of
engineering judgement. The time points might he selected, for example, to correspond to mile-
stones in the reliability development program. The parameter estimates and goodness-of-fit
tests obtained in illis paper and those obtained b. (ro are esscnt allN complemrentar, wit h
respect to various applications of the )uane model It is not possible to determine the precise
sample si/e at which one approach becomes more advantageous than the other Based on
experilnce, the chi-square goodness-of-fit test tends tii reject most sample daia, including data
that fits the model. when sample siues are too small Therefore. rejection of the model 1y the
chi-square test. based on data with a questionable total number of samples. might he viewed as
inconcluse and the more accurate test developed h (row could then he applied For large
sample Si/es lhal f,,e al least 10 failures between time points, the chi-square test should he
ac:urate and is .omputationall. easier Data that fails to fit the NIIPP model with mean value
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function M) based on these tests requires a more general approach. A NIIPP model with a
different intensity such as discussed in III, or a less constrained model such as 1131 might then
be tested.
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I. INTRODUCTION

This paper is concerned with deriving the distribution and/or moments of the optimal
value for a class of stochastic prototype geometric programs in which a subset of the cost
coefficients are lognormally distributed. Th-- i~iograms are assumed to be superconsistent and
soluble for all positive values that can be taken on by the cost coefficients. It is also required
that the dual of a program has a unique optimal point, 8, with all positive components, for all
possible values that can be taken on by the components of' the cost vector c. Such programs
include soluble programs with no forced constraints. Also included are superconsistent soluble
programs whose forced constraints are nonredundant (and hence active at optimality) and
whose forced constraint gradients are linearly independent at optimality. for each positive-
valued cost vector c.

The class of' problems specified above. while of interest in themselves, can be used to
obtain the distribution and/or moments of' the optimal value for more general classes of' sto-
chastic prototype geometric programs. This will he indicated in Section 6.

The distribution and/or moments or' the optimal value of' a stochastic program will he
expressed in terms of the density function of a vector i . (log Ar, log K 1.  log K,j)',
where log denotes the natural logarithm function. d is the degree of difficulty of the program,
and

*thi- research was suppiorted in part by the Office orf Naval Researvh (rrntract NlXK)14-7s-( -0)2S4
tNo% with U; S Army~ Materiel Sysrerns Analysis Achy io Aberdeen t'rrs ing (irrrund. %.4rr~land
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log A "h log for I. . .

In the aboe t.. c,,)' is the vector of cost coefficients (where ... denotes transpose) and
the b are constants thai are independent of' the c,.

()ne ad ,aniage to deri\ing tile distribution and/or moments of the optimal \,alue in terms
(it tile densiit t'uoctton of' i is that the vect " is normally distributed Alhen the stochastic c
are joint[ lognoriall, distributed. Furtheri, n , under certain conditions, it is reasonable to
expect that I. hchaes approimately as if the vector of stochastic cost coeffictents were lognor-
mal. distribttICd C Cri "hen it is" not. More precisely, it the stochasiic cost coefficients.
, I .,tre pil,,\ c-, alued and the variates (log (, i l are independent ,ith tinite means.

variances, and third order absolute central moments, then one can appl\ i central hlmt theorem

for random % ctors to he relation I = ,1 . where A (b .... log h log It....

log I' I 'hus, under thle above conditions, one might expect that . lends to he nornall,
distrbutcd protid.d the stohastic c are positive-valued. stric l uinlimodal, conlinuous arl-
ates, the number of indices in / is "large" in comparison to d + I. and no partial suni of d + I
of the ,' ' is exce,,isclV" dominant in the sum for L.

rhe results otf this paper should be of interest in instances where the operating or coni-
struction costs associated with a contemplated project or engineering s.stern can he adequatel
approximated as the oplinal %alue of" a stochastic prototype geometric program with lognormiall,
distributed cost coCfliciClis In such cases a knowledge of the distribution function and/or
nionilents would be useful as a predictive tool in financial planning For instance, if the distri-
bulion lunction ol the optinal value w, ere known one would be able to predict with a gi\,en pro-
bability that a proposed system s operating or construction costs incurred over a given period
would lie within a specified set of limits.

To reflect the uncertainty as to the future costs, c,, that will be encountered during the
construction or operating period of interest a cost analyst often subjectively chooses a distribu-
tion for each cost c. Cost analysts have frequently found families of positive-valued random
variables that are continuous and strictly unimodal useful for this purpose 191. The lognormal
random variables foirm a two parameter family that meets these specifications. Recall a random
variable X is said to be lognormal iff log X is normally distributed. Properties of lognormal ran-
dor variables can be found in 121.

Cost analysts are most often concerned with the distribution of values of c, about a central
value and not with tail values. Thus. an analyst who wishes to utilize the present results might

proceed to express his uncertainty about the future value of cost coefficient c, as follows-

I Assume t is lognormally distributed and subjectivelx choose the median value oft'
denoted bh t.

2 Spcifk ,in inicrvil of interest about , if the form 10 t,' 0 £r where 0 (. t I

3 Subjectively choose F - (0, I ) such that I - h reflects one's belief that , E 10,
o I ). . the more confident one is that ( I. 01 ' the closer I - 8 should he chosen
to I

h6i
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4. Calculate the unique value of the standard deviation of c, that is consistent with (1)
and the equation Pr(0,- < c, < 0,,) 1 -8, where Pr denotes the probability function
associated with c,.

Results of the paper do not require that the stochastic c, be independently distributed.
Thus, for every pair of stochastic cost coefficients c,, c, (i 1 j) the analyst may subjectively
choose a number between -1 and 1, the correlation coefficient p, of log ci and log c, to reflect
his opinion as to the interdependency of c, and c. The theory allows for the possibility that
pij = ±k1 (i.e., with probability 1 c) = ac," for some constants a E (0, o) and , E (-oo, o)).

In Section 2 the notation used in connection with the deterministic and stochastic
geometric programming problem and its dual and transformed dual is presented. Also the spe-
cial role of the transformed dual program in obtaining the distribution and/or moments of the
optimal value of the primal program is indicated.

Section 3 presents and discusses the assumptions placed upon the primal program
throughout Sections 3 through 5 and the appendices. Additionally, useful properties of the
density functions of L and L A (log K .  log KI)' are stated.

In Section 4 we use the density functions of L and ti, together with the maximizing equa-
tions for an unconstrained transformed dual program, to obtain the density functions of r and
(r, v(P,)). Here r denotes the random vector of the optimal point of the unconstrained sto-
chastic transformed dual program and v(P,.) denotes the optimal value of the stochastic primal
program. We then obtain the density function of v(P,) as a marginal density of (r v(P,)).

In Section 5 we use the density function of r to derive a formula that expresses each
moment of v(P,) as the integral of an explicitly given integrand over an explicitly specified con-
vex polyhedral subset of R', where d is the degree of difficulty of the stochastic primal pro-
gram.

Section 6 briefly indicates how the preceding results can be used to calculate the distribu-
tion and/or moments of v(P, ) when P, need not satisfy all the assumptions of Section 3.

Appendix A contains the statement and proof of a lemma from which important proper-
ties of L and L immediately follow. These properties are stated in Theorem I of Section 3.

Finally, in Appendix B we establish that boundedness of the dual feasible set is a
sufficient condition for the existence of all the moments of v(P, ). under the assumptions of
Section 3.

2. NOTATION AND PRELIMINARIES

We shall now review the definitions and notation used in connection with prototype
geometric programming that will be utilized in the paper. In the following, for every positive
integer v, <v> A I ..... v1 and <i> A 10,1, v.. Also, for every matrix P, P denotes
the transpose of P. All elements of Euclidean n-space. R", will be viewed as column vectors of
n real numbers and the zero vector will be denoted by 0.

Recall a prototype primal geometric program has the following form 141: inf g,1(I) subject
to g() < I V K E <p> and f, > OV i E <m> where = t1 .  ,,)and g.(t) A

.3..
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fl tfor K E <p>. In the above A = (a,) is an n by m matrix with real entries called the

exponent matrix and c c(c1 .... c,,)' is a vector of positive numbers called the vector of cost
coefficients. Also, J. A 1lmM, 1, . .... nj where ml = I, m. = n,,r + I for K E <p>, and
lp = n. The constraints g,(t) < I are called forced constraints and we allow the possibility that
a primal program has no forced constraints.

In this paper we shall be concerned with problems of the above form when some or all of
the cost coefficients are stochastic variables that are lognormally distributed. Thus, we shall
assume there exists / C < n > such that I , 6 and i E I iff c, is stochastic. Let
C/ (c, .... , c I' where il < ... < i,, and I = [i. P E <w>}. Thus, c/ is a random vector

formed from the stochastic cost coefficients. Values taken on by cl will be denoted by c/. Also
c will denote the value taken on by cost coefficient vector c when c/ takes on the value c/. We
shall let P and P denote the corresponding stochastic and deterministic prototype primal
geometric programs. Furthermore, v( P ) will denote the optimal value of P and v( P ) will
denote the stochastic variable that takes on the value v(P) when cj takes on the value cl.

The stochastic program P, is not convenient to work with due to possible randomness in
coefficients of the forced constraints. To find computationally tractable bounds on the solution
of a two stage geometric program with stochastic cost coefficients, Avriel and Wilde [31 con-
sidered the stochastic problem D, in place of P, where, for every > 0, D is the dual of P as
given in [41. The stochastic program D, has the attractive feature that all its randomness is

confined to the objective function. To see this recall D is the following program: sup H

,,/6 }[ A ',(F" .... subject to the normality condition 6 6, = I, the orthogonalitv conditions

a,, 6, = 0 for J E < im > , and the positivity conditions 8, >, 0 for i E <n>. In the above.

for evcry K E <p>. ,8,) A 8, for 8 E R". Also, in evaluating the dual objective function

one uses the convention that x' = = I for x = 0. When P, has no forced constraints wke

set p = 0 and define the expression H X,,(6 5)' to be 1.
K-1

Under rather general conditions one has v(D ) v(P ) for E R" [4, Ch. 61 (where R".
denotes the positive orthant of R" and v(D ) denotes the optimal value of D ). This is true.
e.g., if P is superconsistent and soluble [4, Ch. 41. Thus, frequently the distribution function
of v(1) ) will be the same as that for v( P ), where v(D, ) denotes the stochastic variable that
takes on the value v(1)) when c1 takes on the value 1. Obtaining the distribution function

and/or moments of vD ) is facilitated by the fact that the constraint region for D is a
polyhedral convex set that depends only on the nonstochastic exponent Matrix A.

Instead of working directly with D we shall use the transformed dual program, b, , con-
sidered in [4, Ch. 31. Recall 4 is obtained from D by solving the normality and orthogonality
constraints of ).

In what follows we shall assume without loss of generality that the rank of A is in and that
q E R" is not in the column space of .4, where q, = I if i < n( and q, = 0 if I > n,, (see 14.
(h. 31). As in 141 we deline d to be the dimension of the solution space of the system of equa-
tions 41'8 = 0. q'6F = (1 (Recall d is called the degree of difficulty of P and, under the above
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assumptions, equals n - m - 1.) Throughout the paper we assume d > 0. (The distribution
problem for v(P,) when d = 0 has been studied by R. Stark in [13].) In accordance with the
terminology in 141, we define N A [b'' j E <d>} to be a nullity set for P, iff Nis a basis for
the solution space of the above homogeneous system of equations. Also b" E R' is called a
normality vector for P, iff A 'b10' = 0 and q'b"() = I.

Let N A I b" j E <d>) be any nullity set and b") be any normality vector for P.

Note 8 E R" satisfies the orthogonality and normality conditions for D iff = b() + r b'

where the r, E R' are uniquely determined by 5. Thus, by replacing ,, in D by b,"' +

r,bj(' we obtain the equivalent transformed dual problem D:

sup K G:,b') K (,b 1 '') J ,(r) X. (r)17

subject to the positivity constraint Rr > -b"" where r A (r .  r,,)' (the vector of basic
variables). In the above (K(F.b"')i J !E <d>} is called a set of basic constants for P

(corresponding to N and b') where K( ,b' I) A f , for J E < d>. Also. B is the n by d

matrix whose jth column is b'" for j E <d>. Finally, for i E <n> and K ( <p>.
8 ,(rl A b," + 7 rb,"' and X8(r)A E 5,(r). When P has no forced constraints we define

P A Itl

H k(r) to be 1.

Note that the parameters in h depend on the choice of" nullity set .% and normality Nector
b"'. However, as v ) = v(D ) for ? E R'' (where vf) ) denotes the optimal value of h, ),
the optimal value of' is independent of the choice of N and h"'. Thus, for any nullity set A
and normality vector h"" for P, , the distribution function of (D, ) is identical to the distribu-
tion function of v(D, ), where v(I/, ) is the stochastic variable that takes on the value v(D I

when c/ takes on the value C'/.

To obtain the distribution function and/or moments of v(), ) we shall first obtain the
density function of the random vector L A (L,.L .... L,,)' and L A (L 1... Lj)' where,
for./ E <d>, L, is the random variable that takes on the value log K ( .h'' ) when c/ takes on
the value ?/.

3. On the Density Functions of L and L

Unless otherwise stated, throughout the remainder of the paper we shall assume the fol-
lowing:

(I) {', E' E <u>i is a set of positive-valued random variables such that, for eve-y

E <n>, c, v, ' for some r, E (0,o) and /3, E - , E < u>. Further-

more, it is assumed that (log e.. log c,) is a nondegenerae normal random vector with
mean vector A = (A 1..... .. u,,)' and dispersion matrix %

(2) There exists a nullity set I k ' J E <d>I for P such that 1 .' ! € < d> ) is linearly
independent where '1' IA j3','' for i ( < d> and 13 is the n x u matrix whose (, 1) entry is
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(3) For c... .. ue cl that c' takes on the program P is superconsistent and soluble;

(4) For every value j that c, takes on the program D, has a unique optimal point s, and
> 0.

Many of the results obtained under the above restrictions form the basis to approaches for
calculating the distribution function and/or moments of v(P,) under less restrictive assump-
tions. This will be briefly indicated in Section 6.

Assumption (1) allows for the possibility that a cost coefficient c, is constant (',8 = 0 for
all v E <u> ). Also, (1) permits one to conveniently work with a vector of stochastic cost
coefficients c/ = (c . for which (log c,, .  log c,.)' is a degenerate normal random

vector. Degeneracy would occur, e.g., if c' and c, where components of c, such that c,= cj'
for some t E (0. -) and f3 E R1.

To evaluate the mean p., and variance (r,2 of log e, a cost analyst could apply steps (I)
through (4) of Section I to e, in place of c,. After choosing f,, the median of e,, and the vari-
ance of e, by these steps the values of A, and (r, can easily be calculated [2].

Note Assumption (2) is satisfied if u = n and c, = e, for every i E <u>. Also, if there
exists a nullity set of P, that satisfies (2) then every nullity set of P, satisfies (2) (Proposition
I).

Recall, for c E R"', P is called superconsistent iff there exists t E R"' such that I > 0

and c T, fl t' < I for every K E <p>. Also, P is called soluble iff P has an optimal

point. It can easily be shown that P, is superconsistent for all 7 E R'> iff there exists a linear
combination of the columns of A, say x, such that x, < 0 for all i E J_ K E <p> [1, p. 329].
Alternately, one can show that P is superconsistent for all F E R" iff the set
(8 E R"I 8, > 0V i E <n>, A's = 0, and q'8 = I) is bounded [1, p. 3291. Moreover, if the
above set is bounded and contains a point 8 > 0 then P, will be superconsistent and soluble for
every F E R', (by [4, p. 120, Th. 21 and [1, p. 3291).

Assumption (3) implies that v(P) = v(D,) for every value T, taken on by c ([4, p. 117,
Th. 11).

Assumption (4) holds for F E R'. if P is soluble and has no forced constraints. More
generally, one can show (4) holds at F E R" if P. is a superconsistent soluble program whose
forced constraints are nonredundant and whose forced constraint gradients are linearly indepen-
dent at optimality. By nonredundant we mean that the optimal value of P is greater than the

optimal value of P ., for every K E <p>, where P , denotes the program obtained from P,
by deleting forced constraint K.

If the components of L form a set of independent random variables then we obtain a
d

simpler formula for the density function of L since, in this case, g(11. . d) - H1 g,(I,)
1-1

where g is the density function for L and g, is the density function for L,. If, in addition, LO is
independent of the components of L then the calculation of moments of v(P,) is simplified.
This follows from the fact that one can express v(P,.) as the product e"w(r) where W is a
known function cr a d-dimensional random vector r whose density function can be calculated
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from that of L. Thus, when L 0 is independent of L we have E(v(P,)) - [E'(e'] [E'(cvr))J
where EO(Q) denotes the vth moment of random variable Q (whenever this moment exists).
If L0 is a linear function of the components of L one can obtain a function (; of r such that
v(P,.) - &(r) from which one can calculate E'(v(P)). It will be shown, under the previously
listed assumptions, that one can always find a nullity set Ib~ ")jI E <d>) and normality vector
b(°) for P, such that L0 is independent of L if ,0) q span {' Ij E <d>) and L0 is a linear
function of the components of L if S(0) E span 1U)lj E <d>) where 0 A ,/o) and is
any normality vector of P.

Theorem 1 indicates how to obtain a nullity set for P_, {b(' )j E <d>l, such that the
components of the corresponding random vector L are independent normal variates whose
means and variances are known. Also, using the above nullity set, it is shown how to obtain a
normality vector for P,, b4°), such that if .(O) q span J(i"'j E <d>) then the components of
the corresponding random vector L are independent normal variates whose means and vari-
ances are known. The proof of Theorem I follows immediately from Lemma A which is stated
and derived in Appendix A. The proof of Lemma A uses the eigenvectors of the dispersion
matrix A. Fortunately, however, the calculation of the above-mentioned nullity set and nor-
mality vector and the calculation of the means and variances of the corresponding variates L,,
j E < d>, do not require any eigenvector or eigenvalue calculations.

THEOREM 1: (a) Define lb tJ)j E <d>) inductively by bP') A b". and, for

1 < j < d, b('"Ab/''- A (<P3'b('), O3'b " > )-I (<63'b , f3'b(l'> )b"), where

<x,y> A x'Ay for (x,y) E'RU x Ru. Then jb'Ij E <d>} is a well-defined nullity set of

P.

d

(b) Define b" A (o)_ - (<P3'b), 3b(,>))-' (<3',/', /3'b"I> W)b"t if .V"' q span
/-I

{;(i)(j E <d>j, b(°) A bL" otherwise. Then b(°) is a well-defined normality vector of P,..

(c) For every j E <d> let Lj denote the random variable that takes on the value log
K,(,,b ( .') when cl takes on the value Zc. Also, define L A (L1 ..... Ld)' and
L A ( 0,L 1, .... LY. Then L is a normal random vector with independent components.
Additionally, L is a normal random vector with independent components if ;(()q span
({Vi)fj E <d>}.

(d) For every j E <d> let g, denote the density function of L, Then g,(I)=
(n, 27- exp (-(21)-'IQ - v,) 2 ) for every I E R', where v, is the expected value of L, and

1 2 is the variance of L,. Furthermore, v = <A,0'b'I'> - a,b,(' and 1,2= <,6'b' ,

I-I

3'b )> % for every j E <d>, where <., > denotes the usual inner product on R'.

Throughout the remainder of the paper we define b' and L, for j E <d>, L, and L as
in Theorem 1. We also denote K,(c,b(") by K,(c) for j E <d>.

We shall now show that if there exists a nullity set of P, that satisfies Assumption (2)
then every nullity set of P, must satisfy (2).

PROPOSITION 1: If Assumption (2) holds then for any nullity set [ ) E <d>) of
P, the set 1.' ').1 E <d>) is linearly independent where i') A I3'b/' for every j E <d>.
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PROOF. L .. . Ij E <d>I be a nullity set for P, such that 13(i11j E <d>) is linearly
independent where g() 4 P'S~' for every j E <d>. Let B A span {/ ()fj E <d>) and S A
span (iJ)Ij E <d>). Define T to be the unique linear transformation for B to S such that
T(b (j ') - Vj for every j E <d>. Thus, since j3S'J) - ,(j) for every j E <d>, one has
T(b) - )3'b for all b E B.

Since {bP)Ij E <d>) is a nullity set for P, one has span {bP)Ij E <d>} - B. Thus,
for every j E <d>, T(L/()) -'#'Pj) - jO). Note Tis an isomorphism from B onto Sand
(i/)lj E <d>) is linearly independent. Hence, (t) jj E <d>) is linearly independent.

Next we consider the assumption (O) q span (Vi) Ij E <d>J.

PROPOSITION 2: Assume i(o) q span {i(')Ij E <d>). Then for any nullity set
j(bj)t j E <d>} and normality vector P 0) for P, one has (O) q span {(j)jj E <d>} where

(Af3' P ' ) for every j E <d>.

PROOF: Define h A span (i)[j E <d>} and §SA span (' j E <d>}. Let fTbe
the unique linear transformation from B to S for which T(b(')) - i(j) for every j E <d>.
Since B'/L" (= ( for every j E <d> one has t(b) = P'b for all b E B.

Since (/ i'lj E <d>) is a nullity set of P, one has span tb(J'Ij E<d>} C B. Also,
since 'O) and b/(o are normality vectors of P,. it follows that b(o - b 0 E span
{/'-"jI E <d>}, i.e., /'(0 E . Thus, for every j E <d>, ()' E h and hence, T(W' ) -
A'/ (I ) = (1). Finally, observe t is an isomorphism from B onto S since i'o, q span
1.(V"Ij E <d>} and (1V'Ij E <d>) is linearly independentby Assumption (2). Moreover,
Ib('1j E <d>) is linearly independent. Thus {.(-}lj E <d>) is linearly independent.

As mentioned earlier, when u = n and c, - e, for every i E <u> then Assumption (2)
holds. In addition one has i(0) q span {(Jij E <d>} and hence by Theorem 1 the com-
ponents of L. are independent. We next consider the case where Assumption (2) holds but
Vo) E span {'j E <d>).

PROPOSITION 3: Assume i(0) E span {(B;lj E <d>). Then there exist y, E R' for
d

j E <d> such that s() - , yjs (. ) where s(') f'b (
' for every j E <d>. Furthermore,

d
Lo- , yL, + Dwhere Dis the constant 1b° - l, o ] Ilg a,.

PROOF: Since (0) E span {i(' 1 j E <d>), by Proposition 2 there exist y, E R1 for
d d

j E <d> such that s(1 ' - y,s .'1 . Thus s,(0) Y, y,s,( ' for every i E <u>.

By Lemma A, Part (iii), Lo log Ko(c) - log- a (exp(L(es(o))I - ,( 1 log

a , + SZ o l,°  og e, - b,(" ' log a , + Z ys,"' log ,-E ,1o' log ,, +

IYJ s' log eJ, b,"'1 log af, + y,L (e,s"' ) - b, (0 ' log a, + Y'
-|- ,-I [ - ,-I -
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Lj - b,'j' log a, - yL, + D where DA b,.... log I- y , loga,-
-- I b ,-

bi((o) - Yjb,(-) log a,.

We next consider the d-dimensional random vector r A (r . r,) mentioned earlier
whose density function can be used to obtain moments of v(P, ). To define r assume c/ takes
on the value T1. Then, by Assumption (4), D,. has a unique optimal point 6,. Since
lbtJ)lj E <d>) is a nullity set and b1° ) is a normality vector of P, there exists a unique pointd

r.A (r1 (') .... r,,())' E Rd for which 8, = b" + " (r,(T))b <''. We define r to be the ran-

dom vector that takes on the value r- when cl takes on the value ,. In the next section we
shall obtain the density function of r from that of L. Also, when ; V span ;'V'Ij E <d>).
we shall obtain the density function of v(P,.) as a marginal density of (v(P,).r). The density
function of (v(P,),r) is obtained from that of L.

4. THE DENSITY FUNCTIONS OF rand v(P,)

Assume cl takes on the value F/. Since 8 is an optimal point for D with all positive
components (Assumption (4)) it follows that 8,. satisfies the maximizing equations for D [4, p.
88, Th. 31. Expressing 8, in terms of the components of r, the maximizing equations can be
written in the form log K,(- ) = h,(r) for every j E <d> where, for j E <d>, h, is the
function defined in Theorem 2. The above equations will be used to obtain the density func-
tion of r from that of L. From the above maximizing equations one can easily show that the
optimal value of P satisfies the equation log Kc(-i) = log (v(P )) + ho(r ) where h, is defined
as in Theorem 2 14, p. 88, Th. 3]. This equation, together with the maximizing equations, will
be used to obtain the density function of (v(P,),r) from that of L when : q span
V01"j E <d>).

To obtain the density functions of rand (v(P, ),r) we shall first define the functions /h, for
j E < d> and establish several of their properties.

THEOREM 2: Let H A r E R'lBr > -b...) where B is the n x d matrix whose ith
column is b' 0 for.i E <d>. For every j E <d> define h,: It - R1 such that, for r E H,

h,(r) b,(') log 8,(r)- , " log YQr)

(where x , " log Q,(r) AO 0 if p = 0), In the above, for every r E R', 8,(r) ' 'M +
K-1I

r,b,' for i E <n> and ,,(rA Q 8,r) for K E <p>. Also, for every j E <d> and

K E <p>, X~' A It b,''J. .

For every j E <d> define i,: (0.oo) x t - R" ' such that, for (:.r) ( (0. ) x !t,
h,(z,r) A h,(r) ifj E <d> and h,(z.r) A log : + h,,(r).

Finally, define h: If - R' and hi (0. -) x 11 - R ' * such that, for ever
(z.r) E (0.oo) x tt, h(r) A (Oil(r). hAr) ' and /,(z.r) ( (:(.h 1 (:.r(.
Then
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(a) h and , . ontinuously differentiable in H and (0,0o) x H respectively;

(b) his I-I in Hand his I-I in (0, -) x H;

(c) h is onto R",

(d) If "' span {("j j E <d>l then /his onto Rd+t.

PROOF: (a) Clearly, for every j E <d>, h, is continuously differentiable in H and, for
every j E <d>, h, is continuously differentiable in (0,-) x H. Thus, h is continuously
differentiable in Hand his continuously differentiable in (0,o-) x H.

(b) Let rand s be elements of H such that h(r) - h(s). Note 8(r) > 0 and 8(s) > 0.
Also, since (log KI(c) ... log K,,(c))' is a nondegenerate d-dimensional normal random vec-
tor, cl takes on a value, say jI, for which log K,(-G) - h,(r) = h,(s) for every j E <d>.
Thus, by definition of K, and h, for j E <d>, 8(r) and 8(s) satisfy the maximizing equations
for D. Also, 8(r) and 8(s) are feasible points of D. Thus, by [4, p. 88, Th. 31, 8(r) and
8(s) are optimal points of D. However, by Assumption (4), D has only one optimal point
and hence 8(r) = 8(s). This implies r = s since the nullity set lb' lj E <d>) is linearly
independent.

Next, let (zt,r) and (z 2,s) be elements of (0-) x Hsuch that (zt,r) = h(z 2,s). Then,
I(r) = h(s), and hence, r = s. Also, ho(zj,r) = h(o(z,,s). Hence, by the definition of h0,

log z h0(z,r) - b,'" log 8,(r) + , Xa" log QKr)
I K-I

,". log 8( + log A. (

- log Z'

and thus z = Z2.

(c) Let u E R'. Since (log KI(c). log Kd(c))' is a nondegenerate d-dimensional
normal random vector, c/ takes on a value, say ,. for which log K,()- u, for every
j E <d>. By Assumption (4), D has an optimal point 8 such that 8 > 0. Let r be the

unique element of Rdfor which 8 (b"' + " r,bIt" and denote i by 8(r).
p-I

Since 8(r) > 0 one has r E H. Furthermore, since 8(r) is an optimal point of D, by [4.
p. 88, Th. 31 8(r) satisfies the maximizing equations for D, Thus, for every .i E <d>.
h,(r) = log K,(j) = u,. Hence, his onto Rd.

(d) Assume ;"" q span {.'' Ij E <d>). Let u = (u .  u)' E Rd and u, E R1. By
Theorem I, (K,(c), K(c) ..... K,(c))' is a nondegenerate (d + I)-dimensional normal ran-
dom vector. Thus, c, takes on a value, say ./, for which log K,( ) - u, for every j E <d>
By Assumption (4), D has an optimal point A such that A > 0. Let r be the unique element of

R' ro which 8- b"" + , r,b"' and denote 9 by 8(r). Let rt, A v(D)
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Since 8(r) > 0 and v(D) > 0 one has (ror) E (0,oo) x H. Also, since 8(r) is an

optimal point of D,-, by [4, p. 88, Th. 31 8(r) satisfies the maximizing equations for . Thus,
for everyj E <d>,

(1) 1i(to,r) - hi(r) = log K, () = u.

Also, by [4, p. 88, Th. 31, since 8(r) satisfies the maximizing equations for D, one has

=- v(D,) K0 (F) 8,(r) b X .(r)
I-I K-I

Thus, log r0 = log KO() - b,'( log 8,(r) + A," log (X,(r)), i.e.

(2) ho(ro,r) - log K0(W) - uo.

By (1) and (2) h is onto RdfI.

Note by Theorem 2, for every I E R" there exists a unique point r, E H such that

I - h(ri). Thus, we can define h 1: R'_. H by h-1(1) A r, for I E R". Also, if ;" q span
('Vl j E <d>1 then by Theorem 2, for every i E=R'd+  there exists a unique point
(z,.ri) E (0,00) x H such that 7= /&(z,r). Thus, when ;"'" q span {;"''I ( <d>), we can
define -1: RdI- (0. oo) x H by I' () A (zj,r,) for / E R .

PROPOSITION 4: (a) r = h '(L),

(b) (v(P,),r) -(L) if V" 9E span IJ"'Jj E <d>).

PROOF: (a) Let cl take on the value J/. Then L takes on the value / A (log K ().
tog KMY))'. By Assumption (4) and 14, p. 88, Th. 31 one has r E Hand log K,(F) - h,(r)
for every j E <d>. Thus, h-'(1) - r. Hence, h-'(L) takes on the value r. when c1 takes
on the value F1, i.e., h-'(L) - r.

(b) Assume S(0) q span ( 1''Ij E <d>}. Then h 1: Rd+l _ (0.-0) x His well-defined.
Let cl take on the value Fl. Then L takes on the value I A (log K0(), log KI(F) ..... log
Kd(F))'. Note v(P,.) takes on the value v(I;) > 0. Also, by Assumption (4) and 14, p. 88,
Th. 31 one has r. E H and log K,(F) - h1 (v(P), r,) for every j E <d> Thus, h- t () -

(v(P). r,). Hence, /'(L) takes on the value (v(P), r,) when cl takes on the value F,, i.e..
/k-(L) - (v(P,.),r).

We can now obtain the density function of r.

THEOREM 3: Let 4b denote the density function of r and g denote the density function
of L. Then

0 if r V 1 ,

'b(r) , {g(h(r))}(Idet Dh(r)I) if r E H.

where Dh(r) denotes the derivative of h at r.
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PROOF: let ,' take on the value c/. Then r takes on the value r A (rl . r, )' \&here
.1

a = h + r," is the unique optimal point of D,. By Assumption (4), 8 > 0. Thus.,

Br > h"", i.e., r II. Ifence, rcan only take on values in /. Thus, 4, (r) = 0, if r V tt

Let B be an open Borel subset of t/. Note, by Proposition 4,

Pr(r E B) = Pr(h '(L) E B) = Pr(L E h (B)).

B. -heorem 2. 1? is I-I and continuously differentiable in B. Also, g is integrable on htB)

,sice K is the densit, function of' L. Thus,

PrkL E h(B)) I,,) g = 5 (g oh1det Dh

112. Vhs. 3- 13 and 3-141. where g Uh denotes the conposition of 1: and / I lence. Pr(r t) =

, h)t /.dct ),. This implies ho(r) = {I.'I(h0r1}(det Ih(r) ) for r ( It.

Nc\t ,kc obtain the density function of (P I.r ).

T1' OREM 4: Let ,h denote the density function of (v(P ).r) and g denote the density
function of' L. Assume V(,) V span (V' LIJ E <d> 1. Then

0 if' (:.r) V (0 ).o x Ii.

r) lkIi(, j0)(Idet Dh(:.r)l1 if (:.r) ( (0. ) Ht.

\w here I)/i (:.r ) denotes the derivative of' i at (:,r)

PR( )()-: By the pioof of Theorem 3 it fiollo, , that (% (1 ).r) can only take on ,alues in

1D.,-) x HI. Hence, 0I(:.r) = 0 if (:.r) V (0. -) x II

Let i be an open Borel subset of (0. ol x // and define : A vP, ). Note by Proposition
4, Pr (z.r) E 1B) = Pr(1i '(L) E i?) - Pr ( E i(B)). By Theorem 2, i is I-I and continu-
ously differentiable in B.fAlso. is integrable on / (B) since k is the density function of 1.

Thus. Pr(I. E hi B)) (k. 5 (- o) Ildet 1)/0i1 112 Ths. 3-13 and 3-141, where k ,it

denotes the composition of R and t. Hence, Pr(Iz.r) E ) - J (k0,1) Idet ti. IThis
implies /,(:,r) = lk,(ft(:.r)))(Idet Dht(:,r) ) for (z.r) E (O. -) x II.

When ' V span IS"Ij E <d> the above theorem immediately ylds the densiit'

f'unction of %IP ).

(()R()LI ARY 4 1: Let I denote the density funct ion of' OP I and assume ', span
S ,/ I < Td> hen

0 if* Q' (0,

f I,I:.r)Idet )ti(z.rII~dr it: ( ((O).

t)bser,le that to evaluate / at : (0. ca)by Corollary 4.1 one must integrate a specified
function olcr the conves, polyhedral set If = jr E R"IBr > -h" When the degree ot
ditffiult , d equals I then II will he an interval in R whose end points can easily be obtained
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Thus, when d - I, one can accurately approximate f(z) by applying a quadrature formula to
evaluate the integral expression for .f(z). However, the quadrature rule must be modified as in
17, Ch. 7. Sec. 6.21 to allow for the fact that the integrand is not defined at the end points of
the interval of integration.

When d > I the effort and expense of devising and applying a quadrature scheme to
approximate the integral expression for f(z) to a high degree of accuracy may not be justified
since frequently the distributions chosen for the stochastic c, will be subjectively determined.
In such cases a numerical Monte Carlo method could be an attractive alternative for approxi-
mating the multiple integral used to express /'(z) 16. 14. 151.

Finally, under the assumption of Corollary 4.1 note the distribution function of v(P, ),
denoted by F, is given by

0 if y < 0.

FU) - :. (0.,0,/ {k(h(zr))(Idet Dii(z.r)l)drdz if Y > 0.

Thus, if great precision is not required a numerical Monte Carlo technique could be attractive
for approximating F(Y) as well as f(z).

5. THE MOMENTS OF v(P,)

In the following,'for each random variable Q, recall E"'(Q) denotes the moment of order
v of Q whenever it exists, where v E N (the set of positive integers). Also, let
E(Q) A E"{Q).

Throughout Section 5 we assume E(' (v(P,.)) exists for every v E N. Proposition B in
Appendix B establishes that boundedness of the dual feasible set F A 18 E RnIA'8 = 0,
q'8 = 1, 8, > 0 v i E <n>I is a sufficient condition for the above moments to exist. Furth-
ermore, one can show P is superconsistent for every Z E R " iff Fis bounded (see p. 554).

To calculate the moments of v(P.) it is advantageous to use the density function of r
instead of that for v(P). To obtain the moments of v(P,) in terms of the density function of r

we shall use the function w: H - R1 defined by w(r) A e" ' ) for r E H, Thus. w(r) = fl

8,(r) if p = 0 and w(r) ) 8(r) r) X(r if p > 0, for r E tt.

PROPOSITION 5: v(P,) = e t Ow(r).

PROOF: Let c/ take on the value cl. Then eI Ow(r) takes on the value K()j(r ) where
,I

r = r1.  ra)' is the point in It for which F, = h" + r,h ' ' is the unique optimal point
II,,

of D. Since 8 > I) one has K 1(D)w,(r) = v(P,) 14. p. 88. Th. 31. Thus, v(P) = e (Ar).

We shall now obtain the moments of v(P, ) when .." E span (;{' I E <d>)

TtIEOREM 5: Assume V()' E span IJ' Ii E <d>}. Then, for every v E N,
E"(0P, )- , {((r)'b (r)dr where, for r E 11.
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eDfl8, W ifp - O,

= efl ,(r) ' ' fl,(r) if p > 0.

In the above D A b," - y,bj' log a, u, A y,b,(') -b,"( ) for i E <n>. and
p-- I I t ,-I

v A for K E <p> where (v .  Y,/)' is the unique element of R' for which
-I

S (0) Y'S( "

PROOF: We shall assume p > 0. (The modification needed in the proof for p = 0
should be clear.) By Assumption (2) and Proposition I the set (s(''I.i E <d>} is linearly
independent. Hence, by Proposition 3 there exists a unique element vY J....v,)' of R" for

d d

which s"'= y,s ' . Also, by Proposition 3, log K0 (c)= y, log K,(c) + D where

) b, - Y y,b," I log a,. By Proposition 5 v(P,) = Ko(c)w(r). Thus,

(1) log (v(P,)) = log Koc) + log (w(r))
d P It

- y, log K,(c) + D + X (z"' log , (r) - b,"" log 8,(r).
I= , I1

Let c/ take on the value c, Then r takes on the value r = (r (). r,())'. Since

8 A b(" ' + (r,( ))b" ' is an optimal point of D and 8 > 0 (by Assumption 4) one has

(by 14, p. 88, Th. 31)
P

log K,(') = h,(r,) - ,b,' log ,(r,) -8 P,' log \,(r,

for every j E <d>. Thus, by (I)

log (v(P,)) = lb Iog 8,(r,) -lk, " og X(r)

+ D + ], A."'log k,(r,)- b,"' log 8,(r

, + v b'' - ,(') log 8,(r,

-" x ....] log x .(r,.

[fence,

v(P,) c' ' 8, (r) n A.(r) ' - (i(r).

It follows that E"'(v(P, 1) = I ({v(P, ))') = , It (rI)l'(r)dr 18, p. 18, Th 1.4.31
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We next obtain the moments of v(P,) in terms of the density function of r when " q
span (sV"I.J E <d>).

THEOR'M 6: Assume V"" q span {.' Ij E <d>) and let v E N. Then,

(a) e 1, is lognormal and independent of R A w(r):

(b) E' (v(P))= E ') E ' (R '

(c) E'' (i'd) = exp s'- vbJ + W () S-I)

where s"' =13'b".:

(d) E"'(R) f I,, Ito r ) (r)dr.

PROOF: (a) By Theorem I I,) is normal and hence e is lognormal.

Note by Proposition 4 w(r) = to(h l(L)) where L = (L ..... L,)'. By Theorem I L,,
and L are independent. Thus, ( 'and Rare independent 18, p. 15, (111)1.

(b) To show that E(R' ) exists let X A e'l and ' A R'. Clearly (, )') is a continuous
random vector. Thus, Pet %- be the joint density function of' 4. ). Also, let w, and w2 denote
the marginal densities of X and ) respectively. Then w (xy) = w1 (x)wd() for all
(.v, ) E R' x R' since N and 1"are independent by (a).

B Proposition 5 iv(P, )}' = XY. Thus, by assumption, E(A)') exists and hence,

f . 'w (xvy)d.dv is convergent. Thus, by Fubini's Theorem 110, p. 207, Th. 2.8.7]
R 'L , R' I K

VV ,vw (.vv dti (Y 1 ) tit where v(U A f vw (Xv) dx = vW v) f
xw( (x = wdy v ) .'). This implies E(.N) = E(X ) vw(y )dv and hence f, V.%v(0dv
is convergent. i.e., -'(R' ) exists.

Since the expected values of c' .,, and R' exist, the independence of c' " and R' implies
EG I I )IE(R' ) LUe' ' ) 15, p. 82, Th. 3.6.21. Thus, by Proposition 5,

E''"'(v(P I)= I-,*(((,"R,'R ) (,' ")l 'M ) E= E '' (cI, "'' '(R)

(c) Recall by Theorem 1 El(/I) = ' , ' - (h'" and V(1.,)= s"'. ..'' where
I ,-

,= J'h .... and I (I.) denotes the variance of /-,. By 121 one has t," : (.1 I exp I',E(I.,) 4

V, 1(I.)] since I., is normal.2

(d) I'sing the densott function 4) of r we obtain "'(R) = ( ') = ( r ir

[8, p 18 .Th 1431

Note that to caluaite L"'(0v1 )) by Theorem 5 or 6 one must integrate a specified func-
tion over Ihe consex polyhedral set It = Ir R '"IBr > h" I Hence, the comments made
in Section 4 concerning the evaluation of /(:) also applk to the esaluation of i"' '((1' 1) In



564 I' it LNR \ND R S F\RK

particular, note that for a given precision the amount of work required to calculate F" (iP I)
by Theorem 5 or 6 should be about the same as the amount required to calculate /(z) bN
Corollary 4.1. Thus, in calculating E '(v(P )), it is advantageous to express E" '(v (P I in
terms of the density function of r as in Theorems 5 and 6 rather than to express E" '(v(P i as

6. EXTENSIONS

In this section we shall indicate how the preceding results can be used to obtain the distri-
bution and/or moments of vP,) when P,. need not satisfy all the assumptions of Section 3
However, no formal statements or proofs will be presented.

In the following, we shall refer to strengthened versions of Assumptions (2), (3). ml.i (4)
which are stated below for a stochastic geometric program I' that satisfies Assumption (IP

We say P, satisfies Assumption (2') iff P satisfies Assumption (2) and A'.... Vi slal
{V'IJ E <d>) where V'" .. O3'b'' for every j E <d>. Ilere Ih' !j E </>) is any nullit
set for P, and k"' is any normality vector for P- Also. the matrix 13 is defined as in Assump-
tion (1).

P is said to satisfy Assumption (3) iff P is superconsistent and soluble for every
c E R".

Finally. P, is said to satisfy Assumption (4') iff 1) has a unique optimal point , and
81 > 0 for every c E R",.

Now consider a family of random cost vectors E) ((0. )}, where t if A

(ci(c) I.....c,, )' for E E (0. oo), that satisfies the following:

ilM (log C E(E) .... log c, (E ))' is a nondegenerate normal random vector,

(ii) E(log c,(E )) E(log c) for every i E < n i>

(iii) limt ('ov(log C, (E), log C,(E)) = Cov(log c,. log c ) f'r eve (,j) ( < n > x <n;-
- 11)

where Coy denotes covariance.

Such a family of cost vectors can easily be constructed if P satisfies Assumption (I
When P also satisfies Assumptions (3') and (4') one can show that P ,, will salisfy Assump-
tions (), (2'), (3'), and (4'), where P,,. is obtained from P by replacing (w ith the cost \ec-
tor c(e). Thus, the results of the preceding sections can he used to calculate the mnome its. dis-
tribution function, and density [unction of P,, for E ( (0. -). Additionall%, one can establish
that the moments, distribution function, and density function of P ,, converge to the
corresponding moments, distribution function, and density function of P, as * tends io ,'o

Next, consider the family of stochastic geometric programs 1 P 'I-y ( (0. oo)v where, lot
yE (O. oo), p', denotes the following stochastic program:

nl H , f
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subject to t ' t + (+z. for every K E <p>, 1>0, and z>0 where

= (. I,,)' and z = (zl, ... z,,)'. One can show P,') satisfies each assumption that P,
satisfies. In addition, if P, satisfies (3') then P,')" satisfies (3') and (4') (even when P, does not
satisfy (4)). Thus, one can apply the results of the preceding sections to calculate the density
function, distribution function, and moments of P,() for y E (0,c-) when P, satisfies (1), (2'),
and (3'). Furthermore, one can establish that the moments, distribution function, and density
function of P,(v) converge to the corresponding moments, distribution function, and density
function of P, as y approaches zero.

Finally, for y E (0,-) and E (0,o), let P,.( i denote the stochastic program obtained
from P,."' by replacing cost vector c by c(e) in P,("'. The family of cost vectors
{c(e)I4E E (0,o)) is assumed to satisfy the properties (i), (ii), and (iii) previously listed. One
can show, for (y,,E) E (0,-) x (0,-), program P( ()" satisfies (1), (2'), (3'), and (4') if P,
satisfies (I) and (3'). Thus, in this instance, one can apply the results of the preceding sections
to Pq.. This suggests that the family of programs IP1 < Ihy E (0,c) and e E (0.-)) may be
useful in obtaining the moments, distribution function, and density function of P, when P
need only satisfy Assumptions (1) and (3'1.

APPENDIX A.

Theorem I in Section 3 is an immediate consequence of the following lemma.

LEMMA A: Define L(z,s) .= " s, log z, for every positive-valued random vector

z A (z .  z,,)' and s E R". Also, define the inner product <,> , on R" by
<x'y> % A x'Av for (x,y) E R" x R". (Note <-,.> % is an inner product since A is a disper-
sion matrix of a nondegenerate normal random vector and hence is positive definite.) Then

i U s,s ) . . L(e,s1 ))' is a normal random vector with independent components
where e A (el . . . . . . . )', s' l  , and

'I

S(, ~ ( < S(1'''1> %) I(<i '' 'S...> o)sI
/=1I

for I < 4 ,

(ii) (e.s'.),L (e,s'''). L(e,s'"))' is a normal random vector with independent

components if V,''. span ) E <d> where s'" - , (<, (.> >\

(< .11-" > o'' when q span I.i. E < d>.

(iii) For everyJ E <d>, sl''='b"' and c'hl = ( x,b Jexp (L (es"')) where
I-I 1-1

b.. . 1 and, for I < J < d, b'= b'' - 13' (<(J'b"',p'b'> ) (<t3'h'k'',3h''"> )b1'.

Also b' ' = b"" if V"' E span J' 'Ji E <d>) and b <' = b'0'- <(3'b'''.13'h''>.)
'-I

(<J3'b""( 'b('> N)bh' if V" q span {JV' IJ E <d> ). Furthermore, {b'' IJ E <d>) is a nul-
lity set and b"" is a normality vector of P, ;
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(iv) Forj E <d>, the density function (h, of L(e,s(') is given by ,(I) A 1
= ,

2w for every I E R1 where p, is the expected value of L (e,s" ) and CU7 is the vari-

ance of L (es") .
, Furthermore, p,= ,.,s," 'and (w2 < s" ,s () >

PROOF: Since A is real symmetric, A has an orthonormal set of u eigenvectors
(Pi. p,,. Let P be the u x u matrix whose jth column is p,. Then P is orthogonal (i.e..
P-= P,) and . A P IA P is diagonal.

For every i E <u> let y, A loge, and yA (i. y,)'. Let-, A P'y. Then - is a u-
variate normal vector with dispersion matrix P'AP = . ([8, Th. 2.1.11). Since A is diagonal,
the components of 5 are independent.

Let (s.w) E R" x R" such that H = P's. We shall show L (es) = L(,w) where A

i.....i,,)'and .1 vu' for E < u>. Note y = P5. Thus, for i E <u>, y, = P,,'

Hence.

= .' = Ii€:.)

For eer, i d d:,nc ,' A 1'N' By assumption {V''Ij E <d>} is linearly
independent Thus W 4 d I i hnearl. independent since P' is nonsingular. Thus, one
can appl> the (iram-Sthrnidi orthogonalization process to {i'' Ni E <d> I to obtain the
orthogonal set I / d with respect to < . > ,where w''' A .' and, for I < j < d,

(2) H IA I. . > i(< w" >,w1 '1

(Note <, >, is the inner product on R" defined by <.v.y> x'.jy for (xv) E R"x R"
<..> is an inner product on R" since . is the dispersion matrix of the nondegenerate nor-
mal random vector , and hence is positive definite.) Also define

(3) H,, 1),, ' (< K'.1 w, ,> ) t < a , ) II> h

/-i

if q"" ' span I' Nj E <d>}, otherwise define w"" A i'". Observe if q" q span
({'l./ E <d>l then i("" q span { i' "Ii E <d>}. Thuslw" 'IJ E <d>} is an orthogonal
set in R" with respect to <...>, when ,"" € span {u')Jj E <d>).

Define s'''A Pw('' for everyj E <d>. Then, forj E <d>, Ks'' P's'' ' Thus. by
(I),

(4) L(e,s''') = L(.w"'') for everyj E <d>.

We shall next show (L(Qw'i ' ) ..... L(,%w'))' is a normal random vector with independent
components. Also, whenever '"" V span K" 'Ij E <d>), we shall show that
(L(ew""U).L(.w').. L(',w"'))' is a normal random vector with independent com-
ponents.
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For every i E < u > let H,2 and -T, be the variance and mean. respectively, of log ,,. For

E K7 <u> define b, A Y (log , r. Note, for every j E <d>, L(,w(.) - w(j 1 log

= ,w,' q, + r,w,'. Let rt E <ci> such that r ;- t. Recall " A (log

.log i')' is a normal vector with independent components. Thus, 10,u 1 E <u> is a
set of independent unit normal random variables. Thus, L( ,w"') and L(j,w"')) are normal

random variables. Moreover, L(Q,w(' ) and L(j,w'") are independent provided h

o,2w, w, = 0 [8, Th. 4.1.1, p. 701.

Since, for every i E <u >, 0,2 is the variance of j, and , is the dispersion matrix of /

one has ' K,"'w) = <w w'> By construction of {W"' 'j E <d>j one has

< W"(. W(I> 0) 0for r,t E <d> with r , t. Also, <W ' ,WW >,=0for r, E <d> with

r ; t provided .... ' span (.V"Ij E <d>l. Hence, by (4), (L(es.'') .... L (es ")) ' is a
normal random vector with independent components. Also by (4), (L (es'),
L(es'). L(e.s"'))' is a normal random vector with independent components if Vo"' V,
span (V''hJ E <d>).

Next, let (x'v"') E R" x R' for i E (1.2) such that y"' = P'x"'. Then,

(5) <. ..V(2)> . < P'xi),P'x 2 > = (x'')'PP'x(' 2  <X 1), 21> 1.

Observe s'') Pw) = P4,1 1 = 1Vt. Also, by (2) and (5), for I < I < done has

(6) S''>  PwI'  Pv '' - (<W tw/> t) ( /)',w(/)> o)Pw I

'I= _ (<x sI"'5' > ') I (< , ',s ()> \)s (1.

Moreover, by (3) and (5) one has
,1

(7) S0= Pw''' = i (Ksl 's t)t (<Vl. ,s(li> \)silt

if .." q span J.,' 'Ij E < d>). This completes the demonstration of (i) and (i).

Next, we shall obtain a nullity set (b' 'hj E <d>) and normality vector b")' for P, such

that .5'' =8,'b' ) and H , ,a,) (exp(L(e,s '))I for every .j E < d>. Let S A

span f?'' 'J E <d>} and BA span in Ij E <d>4. By assumption ('' 'Li E <d>) is
linearly independent and hence a basis for S. Thus, there exists a unique linear transformation
1: S - B such that T("') = I, '' for every j E < d>. Since Ih''Jj E <d>) is a basis for
B, T is an isomorphism from S onto B. Also, since T '(/'',')= :,','= 1),'', for every

( < d > one has 7" 1(b) 3'h fc-r every h E B.

Recall s''= S, - S. Let I < i < d and assume s' E S for I < I< J. Then by (6)
one has s' ( S. Hence, <''I, E <d>} C S. Also {s '' ' E <d>} is linearly independent
since kw' i E </>I is orthogonal with respect to <.,->, and Pis a nonsingular matrix for
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which s(' = Pw ' or every j E <d>. Thus, {s"'Ij E <d>} is a basis for S. Since Tis an
isomorphism from S onto B, (T(s"') 1i E <d>) is a basis for B. Thus, (b''Ij E <d>) is a
nullity set for PI. where b" I A T(s ( j') for j E <d>.

Let S A span {'(JIj E <d>j and /? A span {P')lj E <d>). Suppose (0)q S. Then
there exists a unique linear transformation T S - B such that i"') = /' for every
j E <d>. Also, by (7), s'01 E 9. Thus, we can define b(0 ' A t(slo)). Note by the definition
of tone has 7'(s) = T(s) for every s E S. Thus, by (7),

I-I(8) b [(o r_ M ' .' (< s ') s )> %- (< O) s 1)> b ) s()

since T(s'") = T(sI) = b(' ) for I E <d>. For j E <m> let A, denote column j of
exponent matrix A. Recall q E R" such that q, = I if i E <no> and q, = 0 if i > no where no,
is the number of elements in JO. Then by (8), for every j E <im>, one has <b" ), A,> = 0
since bo" is a normality vector and (b")II E <d>} is a nullity set of P,, where <., .> denotes
the usual inner product on R". Also, <br°),q> = < '(O',q> = I since <b"' ,q> = 0 for
every I E <d>. Thus, b"°) is a normality vector for P,.. If (O) E S we define b")) A b'ol.
Thus, whether Vo) q S or V(o) E S one has that b'") is a normality vector for P,..

To show f'bO' s(/) for every j E <d> first observe for j E <d> one has
fP'b t ' -- T-=(b ' ) = T-'(T(s(' )) = s(J. Next suppose .O) qS. Then T is an isomorphism
from S onto BL since {/(b^"j E <d>) is linearly independent and "('') = b ') for every
j E <d>. Also, T-1(6 '') - , - 'b( ' for every j E <d>. Hence, "-(b) = 3'b for all
b E B. Note bt0 ) A TW(sO0 ) E B. Thus, /3'b ° ) = T(b( °)) = 7i-('(s(O))) = s . Finally, sup-
pose ) E S. Then B'b(O) - 0'( o) p,(o) - Pw(0) = s(O). Thus, from the above,
p'b °t )  s"' for everyj E <d>.

Next let j E < d> and observe H c, ' ii a , e >"' = H" J I
,=1 H ,

e,' H [ a',' e .Thus, since O"b''- s r '. one has H c, =

="a j a, e Jexplj s,") log e, = I a, fexp(L (e,s'' '))).

Note b'" = T(s(1 ) = T(Pw(")) = T(pN'')) = T(1,l)) = L''). Also, by (6), for

I < j < d one has b(,)- T(s(") = T('') - (<s',s .> ) (< ,'' .s '>%)

I- IT(s ( t )  b( I) -  "(1'r)f'~) ))( <)9WbI))'b(")>,)b " ) . Recall if .V"o E span

(("'Ij E <d>) then b"°) A b1o). If . o' V span {('')j E <d>1 then by (8) one has

O ) - ., (< P'b(),,bl)> - (<,, P b ,b +> %)b(".
T-I

This completes the demonstration of (iii).
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Finally, let j E <d> and recall L(e,sl ' )) = s, log e, Thus, p, = ' s,4"1', and

W1 = <s '', s''> , [8, Th. 2.1.1, p. 29] since (.A 14,,)' is the mean vector and .% is the

dispersion matrix of e. Also, since L(e,s(') is normal, one has 0,(I) 1 exp

2w for every / E R.

APPENDIX B.

PROPOSITION B: (a) If His bounded then E") (v(P,)) exists for every i, E N.

(b) His bounded iff the set FA 18 E R"18, >, 0V i E <n>, A'8 = 0, and q', = I} is
bounded.

PROOF: (a) Assume H is bounded. Then for every j E <d> there exist real numbers 1,
and u, such that I, < r < u, for every r E H. Let v, E N and define z, A v(P, ). Finally.
assume c1 takes on the value / and recall r = (r, (T) .. r,()' is the element of' H for

which A b)) + . (r,(T))b'' 'is the unique optimal point of D.

Since is the optimal point of D,, by 14. Ch, 3, Sec. 3] and Assumption 3 one has
,r ,12 A,, ,U )A ,,

K," =, i(c)"I-H K,(F:) ' ' l  
H 8,(r, H ' ,,(r, "

! =1 - 1 - I

where -H Ar) " 'I _ A I for r E H, the closure of H, if p = 0. Define T: H R' by
Al - A (A .

8(r) , A ,(r) H (r) for r E H. In evaluating 7(r) use the convention
i=1 K'=1

x' = x = I for x = 0. Then r is continuous on H. Thus, since H is compact, there exists
U E (0.00) such that 0 < r(r) < Ufor every r E H. Hence.

(I) 0 < < U"K (i)" H- K,(7) 0 '

1. Assume "" E span (1.'''I E <d>}. Then by Proposition 3 there exists y, E R1 for
d

E <d> and W E (0. -) such that K(c') = W [- Ki(c)". Thus, by (I),

(2) 0 < : (UW)' [I K,() ' .
t=1

Let j E <d>. 1,- 0 < K,(0) < I then K,(c)"'K,() ' ' ' < K,(c)'K,( )'. Also, if

I < K,(c) then K, (c) h,(l ' < K,(c)"'K,0(' . Thus, 0 < K,()'

< Z,(i) A max (K,()" ' ',' ,() '  ' ). Ience, by (2),
'I

(3) 0 < (UW)' WY Z,(fl.

Moreover, by the choice of lb "' jl E < d> 1, the variates K,(c) for j E < d> are independent
and hence {Z,(c)li E <d> is a set of independent variates.
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By definition ui Z,(0) one has

(4) 0 < Z,(Z) < K,Uc) + K,(")" "'

Since K,(c) is lognormal so are K, (c) ' ' ) and K,(c)"' Thus, the expected values of
these two variates exist and hence so does E(K, (c)" '" ) + K,(c)"'"'""). Thus, by (4), the
expected value of Z,(c) exists. Since the variates Z,(c) for j E <d> are independent the

'I
expected value of (UW) fl Z,(c) must also exist [5, p. 82, Th. 3.6.21. Hence, by (3), the

expected value of z" exists.

I. Assume ;H " span Ij E <d>). Then by the choice of '(t .'I E <d> I the vari-
ates K,(c) for j E <d> are independent. For j E <d> define Z,() A max

(K, (0) '. K, (c)") and let Z0(0) A U'K,(10". Then the variates Z, (c) forj E <d> must be

independent. Furthermore, 0 < K,("' ( Z,() for j E <d>. IHence, by (I).

(5) 0 <Z"< l-I Z,(j).
-0

Note that E(Zo,(c)) exists since Zo(c) is lognormal. Also, for j E <d>. E(Z,(c))
exists since K,(c) is lognormal and 0 < Z,(F) < K,()'1 + K,(f)''. Since the variates Z,((-)
for .j E <d> are independent it follows from (5) that E(,' ) exists.

By I and II we conclude E" (v(P, )) exists for all v E N.

(b) Observe 8 E F iff there exists r = (r i.  r,)' E 17 such that 8 = h' + r h

Also, H is bounded iff 11 is bounded. Thus, F is bounded iff // is bounded.
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A CLASS OF CONTINUOUS NONLINEAR PROGRAMMING PROBLEMS
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A gencral class~ (d continluouime ho niinrci ptoicni. is oiiiidecd

Nccssar. i~id sUtfili n conmditLio n, I'm 1tic C \1C1C sic icI ~illn 11 C cai'

tilied and iplirmil SiIuAIin~ Jrc cdlcd/C IlW M in c m kI Li.ihi\% 111COTCm
I lic lhior\ is ilusiraicd h% means (it inl C\XamptC

1. INTRODUCTION

Recently Farr and H anson [l1 proxed existence theorems. dlualit\ theCoIrom. and Ci mntintl-

ous lime analogues of' the K uhn-Tucker 'Iheorem ]*or a class of' continuous time priigraninling
problems in which nolnaiyappears both in the ohjeccti~e function1 And in theC constrit,111
More recently this class was extended in [a r and I lanson 121 10 inclUde in ihlenms \%ithi
prescribed time lags in the constraints. In this paper wse generali/e these resuLlts, h\ considCHImoc
a more general formi of' the coinstraints and b\ aissumning ai less st ringent constraint kjLalllicani inl
This constraint qualification is analogous to that of' Kuhn11 and Tucker 151 andl Jprii\ids f11rther
unification between the areas of' finite-dlimensional and Cont11.IL1 61u 1 ustmep~igraMni Ilng An
example is presented w herein these results are applied to a ' ersi (if Koi pnians' 141 \kaier
storage problemn which has been modified to adi iress the coinomic iamniicati ins uii an encre\
crisis.

2. T14E PRIIAL. PROBLEM

I hie problem under consideration (Primal Priiblem A) is:

I :)= f (1) ),1 dif

,ubject toi the constraints
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and

(3) z(t) 0, < 0,

where : E L.,, 10. TI. i.e., - is a bounded and measurable i-dimensional function, v is a map-
ping from L,- [0. TI x 10. TI into EP defined by

(4) f.) = f g,(s - a,), s - a,)ds,

./(z ().t). h(v(z.t),) E E'", g,(z(s - a,), s - a,) E E ', . = 0. r. The set 0 =(t

( a< . .•. a< a, is a finite collection of' nonnegative numbers, and h is a scalar function, concave
and continuously differentiable in its first argument throughout 10, 7"].

It is further assumed that each component of' - g, and It is a scalar function, concave
and differentiable in its first argument throughout 10. TI, that each component of the composite
function I (Y(1)0):L, [0,TI E" is concave in z, there exists 8 > 0 such that

(5) either VA,'; (qt) = 0 or VA, (71,t) > 8,

and for each I and k there exists iA = iA () such that

(6) VA./;, . >

where

V,.I (19.) = ,1;(.t)/OaT .

i = I..m, k = 1...n

for -q -". E P, 0. and t E 10. T],

(7) g,(zfli) = 0. 1 < 0.
.j = 0,. . .r

(8) V h h,.t) = I,(v.tI/O'aj > 0.

for , E Er' and t E 10. TI; and
(9a) sup h,(0.T) < cc. sup V ,h,(0, ) < cc. i=1,. .

(9h) su 0 < o, sup V Agjq (O < co. ,i = 0. r.

q, . p, k 1. n.

(9c inf' A(Ai) > -cc,

(9d) sup VAh(7),t) < , V E /", r > 0. A = I. .

A function ( , 10, T1 is termed fi'awh, for Primal P'roblem A if it satisfies the con-
straints (11, (2). and (3). The primal problem is itself said to be feasible if a feasible z exists

It should be noted that Primal Problem A is identical to that considered in 121 if p
and

/I (Y
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where 'm is an m-dimensional identity matrix.

3. EXISTENCE THEOREM

THEOREM I: If Primal Problem A is feasible, then it has an optimal solution, that is,
there exists a feasible for which

V(s) sup V(z).

where the supremum is taken over all feasible z.

We preface the proof of this theorem with a brief discussion of weak convergence and two
lemmas.

Let X be a normed linear space and denote by X* the collection of all bounded linear
functionals on X. If we define the norm of an element ,E E X* by

I Ifi I sup I.1(x) I

and define addition and scalar multiplication of linear functionals in the obvious manner, then
X* is a Banach space and is commonly referred to as the dual space of X. A sequence I.xj in X
is said to converge weakly to x E X if f(x,,) - f(x) as n - oo, for ever, f E X*.

LEMMA I: Let the uniformly bounded sequence of scalar measurable functions 1q,()),
d = 1, 2. converge weakly on 10, T] to q0(0). Then except on a set of measure zero

q0t) < lim sup qW(r).

PROOF: See Levinson 161

LEMMA 2: If q is a nonnegative integrable function for which there exists scalar con-
stants > 0 and #, > 0 such that

q(i) 0 #1 + H, f q(s)ds, 0 < T.

then q0) < 1 e"", 0 t < T.

PROOF: See Levinson 161.

PROOF OF THE-OR-M 1: Let : be feasible for Primal Problem A and multiply the con-
straint (2) by the tn-dimensional vector (1. I ) to obtain the inequality

~ /i(v~~i)if.0 < t < 7'

From the convexity of each . in its first argument, if follows from 18, p. 2421 that
1(:(,).,) aA,.I;0 , a/(t, :,(,).

t~l +-I A-I

where

a -, V,, (,I)
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Set 0,) max 0o Sup, I - ,,(0.1)} by (9 c) and observe that by assumption (6)

A = int min aA () > 0.
I A

Since z is feasible and therefore satisfies constraint (1), it then follows that

(10) .4 A (I) + /, (v(z,t).r), 0( T.
A-1

Define

Vg,(q,s)I = {V~g,q(-j.s)},,P. for 7 E P. s E 10, TI. j = 0,. .

and

IV h( .t) = IV ,h(i'.t),,Y, for, ( EE". E t1, T,

and set

G(z,t.s)= , (s) [Vh(v(z.t)],)g,(z(s),s)
-1 [1 , ,IlI

and
H(:jt,s) = I (s) [Vh(v(z.t).t)llVg,(z(s).s)]

where 1,(I is the indicator function of the set E.

Since h2 and g, are concave in their first arguments it follows from 181 and from (3), 7) and (8)
that

S1(0,t) + f G(O.ts)ds + f II(O.I,s)z(s)ds.

By (9a) and (9b) we select H, > 0 and N, > 0, such that

sup /,,(0,t) + f G,(O.t.s)ds (H 1

and

sup max /1,4 (0,1,s)I 91.

From I0) we have that H T = ((, + 1)A and H 0 J.4 are nonnegative and positive con-
stants. respectively, for which

: '-At)
1 ( O+ Hf z (s )ds, 0( t < T.

A-I A-I

From Lemma 2 we conclude that

(II) ,' z (i1 <( Hexp (0 1) <, f)I exp (H€T)., 0 ( < 7.

and hence the set of' feasible solutions for Primal Problem A is uniformly bounded on 10. TI.

Since (b is concave and diiTerentiahle in its first argument throughout il. TI, it follows
from 19d). [lx and the uniform houndedness property that, for any feasible solutions z and :",
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V(? ) < T sup zAl')- z,)l sup V t(Z"(,),) <
= I I t

and hence I" is bounded above fbr all feasible z.

Let T = lub I'(z ). where the least upper bound (/oh) is taken over all feasible : Then
there exists a sequence {z' } of feasible solutions such that

lira V(? s ) =

dr - (- )-

Since 1A1 is uniformly bounded, it follows from [10] that there exists a . to which a subse-
quence of Iz } converges weakly in L,2 l0T. Denote this weakly convergent subsequence
itself by IA, the application of Lemma I to each component of _" then provides uniform
boundedness for ?. except possibly on a set of measure iero where, as 'w'ill be shown later, it can
be assumed to be zero.

Since each component of the composite function I, (y (..t0. , is conca e in it kolhm s

from [81. (3) and the chain rule for differentiation that

/I v(z , i t hl(v(-,I)l + f If(Z, , S (z'( - ds.sId s, ) 1. I 11

Since each entry of the m x n matrix t (.t.s) is bounded and measurable, it follo\s that each
row ll, (3,t-, I_ 1,, I), C L,12 [0. T and so, by weak convergence.

f I(z..sI (() - :)lds -- 0, as d

Thus, by constraint (2)

(12) lima sup.'(z?( I,0I l(U ,),), 0 I < j

Define IV/./(- =i (( t/, ..... r (-- . 7 -> 0, by the convexity of f

Therefore, from (12).

(13) l /,) ~ (.)/

except on a set of' measure /ero. since by li. assumption (5) and Lemma I ' e ha',e

lim sup 171 t(,t I) 1 z"(l --1 ) )) 0 It

except on such a set.

A second application of I emma I to each component ot '  pr()\ ilc,

S. (t) n ir s up -1) ) 0 . i.('. in 10. 1

and consequcntly : is nonregativc except o) a set of measure /em I 1(m thinis result and
expression (13). we ohservc that -can v.iolatc the c(,inst ra it (4ts t irim)l if hlcm A in. at m(cs.
a set of measure ,cro in [0, T1 We tlCine - to be /erm ()n this set 01 mcasure /cr". a,, well as
for r < I, and equal to t zon the complement 0f this set I he f';,tsihlitl t .- is then esthhlish I
bv noting that

.r (I_.1 I I(f.,), It I <5 I,

and that

lira sup of( l, .1 I /It.t! 1 0 " - ,
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b% the conxe\it\ istraint (I ), and assumption (6).

l. the concax ia and diflerentiahilit\ ot b

I / ((0).1i ) 4' (( -),thd, +- )(-(t)dr

I heretore. b. \Aeak conergence

i= limi ,Adl4'
< f ( 0),ld I '().(I,

Bl1 the definition of I and the feasibility, of :. 1'(:) ( I. thus I'(3) = -' and 5 is an optimal
solution for Primal Problem A. Q. I).

4. % IE A K 1) VA1. IT Y

,ef'ore the dual to Prinial Problem A is fornally stated, a continuous time I.agrangian
t'untlllon and its I rcchct dillerential %kill be introduced.

I m I .1 . I. I Arid l t I._: 10, 1'. define
1141j (u. I u (6 1 ) 4- it I (i lt d/

ti II co[ I -

id lCt ) 1 (Iu. 1, y den itC the I- rechet dilerential 171 w4 ith respect to its firs: argument,

cxaluItcd a H \ilth ihW OC1rClement v & V.' 10. 7 I The differentiability' of each of the functions
Irx.l -', in I natt lc that the I reLct dif crential emIsts and allows 6L (u, .. y) to he deter-
mined b\ the simple fdl'i.ren tiaiton

I ") 1 SI~~i')-'I I. 11k- Y.)
do

I ie I- reclict liflerential his t\ko adi tl mi properties that w, ill be used in the ensuing discus-
sion. namlc., the mcart. i t of 6 .1 y i ii1 its increment y and the continuit of 6i L (u., it y
in y under the norm

Hlere l denotes tlie essential supremu11 [t. p 1121

11',) y ) for i - 0, then from (14) we have

(16) o IL. (11.. : = f jlv ~h (11 t . I,

1i '(t /l Oujr. )y ( k)(A - w"(tll J /0i(t 1 t)] (il~ t.

\n applicatien of I uhini's theorem 191 to interchange the limits of integration enables us to
e\prc,, (16) as

1  6 1 L (it1, 1 y) 8 1 (u. 1 - 4 y'(1i (utiI',Ihd.

\k here

'(It



NONLINAR PROiRAMMIN(i W'1 II I IMI -1)1,1 %N1 I1) CONS I R \IN IN 579

and

(18) F*(u,wjt) = H'(u.s,t)w(s)ds - [V.lu (1),1) 'w (), 1) 7 ."

With this notation the dual of Primal Problem A will be shown to be:

Dual Problem A:

Minimize

(19) G(u.w) = L(.w) - 8 1L (u.wu)

subject to the constraints
(20) u 0), K-tM > 0. 0 < T.

(21) F*(u.w.t) + [V6(ut).i)J < 0. 0 t t

(22) ut) = 0. 1 < 0

and

(23) w) = 0, 1 > T

THEOREM 2 (Weak Duality): If z and (uw) are feasible solutions for Primal and Dual
Problems A, respectively, then

V(z) < G(uw).

PROOF: By the concavity of 0 and -f in their first arguments and the concavity of the

composite function h(v(.t,) in z it follows that L is concave in its first argument and

L(zw) - L(u,w) < 811L(uwz - u).

Thus,

V(z) - G(u.w) = L (:,w) - f) w(,)F(z,)dt

- L(u.w) + 81L(uwu)

8 l 1L (u, %-z - u) + i1L (u.wu)

f ) w'(t)Fz. t)dit

= 1L (u. w f w')z)d

by the linearity of the Frechet differential in its increment. By (17) we have

8 1L(u. wz) - w'(t)F(z~t)dt ) I z'(t){[V(u(t)j + F*(u,vwtldt

_ ) w'(t)F(zt)dt

which is nonpositive by constraints (I), (2), (20) and (21). Q. vI).

[rom Theorem 2 it is observed that if there exist feasible solutions, " and t.), for the
primal and dual problems and if the corresponding primal and dual objective function values,

[(2:) and G( i.-). are equal, then these solutions are optimal for their respective problems
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5. THE CONSTRAINT QUALIFICATION.

The constraint qualification introduced here is motivated by the form of the Kuhn-Tucker
constraint qualification presented by Zangwill [111] and also by Property I given below. The
basic theory surrounding this qualification is established to provide a framework for the
theorems of Section 6.

PROPERTY 1: If

(24) 8 V(z;y) = fyoY()[v0(z(,)t)]di > 0

where z, y E L,-' [0, T], then there exists a scalar o- > 0 such that

V(z +Ty) > V(z), for 0 < T U.

PROOF: By (15) and (24)
lim [V(z + r-) - V(z)]/r = 8 V(z;Y) > 0,
r10

thus a positive o" can be chosen which is sufficiently small so that

V(z+rY) > V(z), for 0< r < o-. Q.E.D.

DEFINITION 1: For each z which is feasible for Primal Problem A, define D(z) to be
the set of n-vector functions y for which

(i) y' E L- [0,.T]

(ii) y(t)= 0, fort < 0

(iii) there exists a scalar o- > 0 such that

zG') + Ty(t) 0, 0 < t ( T,

and
F(z + Ty,t) >/ 0, 0 (< t ( T,

for

0<r < o-.

DEFINITION 2: Define D(z) to be the closure of D(z) under the norm I that is, if
a sequence (Y1 C D(z) is such that IlYd - yII,- - 0, as d - -c, then y E D(z).

Henceforth, the Frechet differential of the mapping F(.,t): L,- 10, T - E' evaluated at z
and with increment y, will be denoted by 8F(z;3y),. It should be observed that, for any
specified value of t E [0, TJ, the existence of F(z;y), is ensured by the differentiability off,
gj, and h and that when -yit) = 0 for t < 0, we have

(25) 8F(z;y), - H(z,t.s) y (s)ds - IV.fz(t),0 lW(t).

Similarly, the Frechet differential of a component F,(.,t) of F(.,t), evaluated at z with incre-
ment y. will be denoted by 8F,(z;y),.
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DEFINITION 3: For each z which is feasible for Primal Problem A define (:) to be the
set of n-vector functions y for which

Wi y, E L,,- 10,TI,

(ii) y(t) =0. fort < 0,

(iii) -A() > 0 a.e. in TtA(z), k = I i,

(iv) 8F,(z,3,), > 0 a.e. in T 2,(z), i = 1. .

where

Ti(.--) = E 10.TI: k(i) 01, k 1 ....

and

T2,()= (t E OTI: F,(z.) 0j, i 1. m.

In a comparison of the sets D(z) and : /(z) with their finite-diniensional counterparts
presented in Zangwill 1111, it is observed that D(z) is analogous to the set of "feasible direc-
tions' at - and 2(z) is analogous to that set of directions for which the dicctional deriati',e,
of each of the active constraints at : are nonnegative.

PROPERTY 2: D(z) C !2(z).

PROOF: Part I. Let -y E D(.). Then by l)efinition 1, there exists a scalar Ir > 0 such
that 0 < T < (T implies z (1) + ry (t) > 0, 0 . Thus, if , () = 0, then YA W > 0.

Assume that I , (z.t) = 0. If~f I(z,), < 0, then by the same technique used in the proof

of Property I, it follows that for r sufficiently small,

['I(: + ,.t) < fI(zj) = 0.

This result contradicts the assumption that -y E D(z) and therefore we conclude that
D(z) C v(z).

Part 2. Assume that there is a -y E L,- 10, T1 and a sequence {y''l C ):) such that max

1,/'- -AIl - - 0, as d - -. Then for all isuch that -A() 0, yA'(t) > 0, d = I, 2, ... It
then follows from convergence in L- 10,T] that -y() >, 0 a.e. on Ti.(., A = I.. n.

Assume there exists an i and a set E of positive measure over which 1 (Z.A) = 0 and
8f; (z ,), < 0 for all t E E. By the continuity of 8F,(z;.), in the L- norm 171, we can choose
a d" sufficiently large such that for d > d°

8f"(Z,-y'), < 0

over some subset of E which has positive measure. This result yields a contradiction to Part I
since it was assumed (yl C D(z) and we can therefore conclude that b(:) C 2(z) QIKI).

DEFINITION 4 (Constraint Qualification): Primal Problem A will he said to satisfy the
Constraint Qualification if the problem is feasible and if

D(~) - AG)
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where Y is an optimal solution to the problem.

In more general problems where convexity and concavity properties are not assumed, the
purpose of the Constraint Qualification would be to eliminate "cusps' in the feasible region.
For example, the constraints

ZI(t) > 0. Z2(0) > 0, 0 < t < T,

and

11 - z () 3 
- z2(t) > 0, 0 -< t < T,

do not satisfy the Constraint Qualification when i(t) = (1,0), 0 < t < 7, since
(1/2.0) E ..?(Y) but (1/2,0) q D().

In problems such as Primal Problem A where convexity and concavity properties are
assumed, violations of the Constraint Qualification can be shown to arise when the constraints
take the form of equalities on some set of positive measure. For example, consider the con-
straints

ZI(t) > 0, z 2(t) >1 0, 0 1 < T,

and

IzI(t) + z2(t) - 1]2 < I - IEWt, 0 < t < T,

where E is a set of positive measure in [0,T] and /,() is its indicator function. It is observed
that for () =_ (1/2, 1/2), we have (1.1) E .9() but (1,1) q D(z), thus the Constraint
Qualification is not satishied.

THEOREM 3: If is optimal for Primal Problem A, then under the Constraint
Qualification

8V(-y;;.Y 0. for all -y E 9G).

PROOF: Part I. Suppose there exists a -y E D(Y) such that 8 V(f;y-,) > 0. Then by Pro-
perty I there exists a o- > 0 such that 0 < 7 < a- implies V(Q + ry) > V(); however, since
y E D( ) we can choot. a 'o' sufficicntly small so that 2 + a 0 y is feasible for Primal Problem
A. Thus, by contradiction of the (ptimality of i, we can conclude that 8 V(F;Y) < 0, for all

E E D(Q).

Part 2. Let fy} be a sequence of functions in D(;) and let yo be such that max

,- "2I" -" 0, as d - -o. It then follows from Part I and the continuity of 8 V(,.) that

8 V(i;'y0 ) _ liM 8 V(j;yd) < 0.

Thus, 8 V(;y-,) K< 0 for all y E D(Y). Q.E.D.

6. DUALITY AND RELATED THEOREMS

In proving strong duality and its related theorems two additional assumptions will be
made. These are:

(26) H(2t.s) 0. 0 < s < t < T

il
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and

(27) F(,t) - 8F(2;Y), > 0, 0 < i < T,

where Y is an optimal solution for Primal Problem A. It will be shown in Corollary I that
assumption (26) is implied if z(t) 0 is feasible.

THEOREM 4 (Strong Duality): Under the Constraint Qualification and assumptions (26)
and (27), there exists an optimal solution (i,i) for Dual Problem A such that ii = and
G(Q,0 -= V(Y).

Before proving Theorem 4 the following linearized problem, called Primal Problem A', will
be considered:

Maximize

8 V(i;z - Y)

subject to the constraints

(28) z(t) >- 0, 0 K, t < T,

(29) F(,t) + 8F;z - ), >, 0, 0 < t < T

and

(30) z(t)=0, fort < 0.

LEMMA 3: Under the Constraint Qualification, 1 is an optimal solution for Primal Prob-
lem A'.

PROOF: If i is feasible for Primal Problem A', then

(t)- '(t) > 0, fort E Tnk(2), k = 1. n,

and

8F,(2,i - Y), > 0, for t E T2 (-), i = 1,...,

and therefore (Q - Y) E 9(M. It then follows from Theorem 3 that, under the Constraint
Qaalification,

8 V(Y;2 - ) < 0

for all . satisfying (28), (29) and (30). The optimality of 1 follows since 2 is feasible for Primal
Problem A' and since 8 V(2;0) - 0. Q.E.D.

PROOF OF THEOREM 4: We rewrite Primal Problem A' in the form

maximize

0 a'(t)z(t)dt

subject to the constraints
z () t 0, 0 t 4 T
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and

<W c(t) + foK(ts)z(s)ds, 0 < t < T

where a(t) - IV0U((t).t)], B(t) - [Vff(Y (t),t)], c(t)W= F(Z1) - 8F( ;Y),, and K(t,s) -
H(it,s). From assumptions (5), (6), (26) and (27) it is observed that the matrices a(I),
B(t), c(t) and K(ts) satisfy the requirements of Grinold's Duality Theorem [3]. Therefore,
there exists an m-vector function i satisfying

(31) i(tW > 0, 0 < t T

and
(32) B'(t) ;Pt) > a (t) + K'(s,t) i,(s) ds, 0 K, t < T

such that
(33) fa TW'(t) c(t)dt = foT a'(t)-Y W dt.

Setting ;P(t) = 0 for I > T, we observe from the identities (14), (17), and (18) that expres-

sions (32) and (33) can be expressed as

(32') F*(YPt) + [VO(U(t),t)] < 0, 0 < t < T

and

(33') L (Y,) - 81 L ( j, ;) = V(Q),

respectively. From (31) and (32') and the fact that P(t) = 0 for r > 7, it then follows that
(li) is feasible for Dual Problem A and, from (19) and (33')
(34) G(-zv) = V(Y).

Finally, by the weak duality established in Theorem 2, it is concluded from (34) that (UO) is
an optimal solution for Dual Problem A. Q.E.D

In order to apply Theorem 4 in practice, it is desirable to be able to verify conditions (26)
and (27) without prior knowledge of the optimal solution Y. The following corollary provides
this capability.

COROLLARY I: if

Vkgji'q~t/a'= - 3j,(-)A/)If-k > 0,

(35) j=0 ... r, i- 1,. p, k- 1. n,

for 1 7 E E', 71 > 0, and 0< t < T,
(36) F (0, t) > 0, 0 < t < T
then under the Constraint Qualification there exists an optimal solution (5,i) for Dual Problem

A such that ii - zand GQ, i) - V W.

PROOF: We have from (8) and (35) that

- 0 I (s) IVh(YUt),t) 1IVgj(-(s),s) 1 0, 0 < t T.

and by (36) and the concavity of F that

MAt- 8F(Y;Y), > F(0,t) > 0, 0 < t < T.
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From these results it follows that the conditions of Theorem 4 are satisfied. Q.EI).

THEOREM 5 (Complementary Slackness Principle): If5 and (z, ,) are optimal solutions
for the Primal and Dual Problems A, then
(37) foT W(t)F(-1,t)dt = 0

and

(38) z'(tjF*(_Z,t) + [!0(5(t),)]}dt = 0.

PROOF: Since Z(t) > 0 and F*(, Zt) -t- [Vh;(?(t),)] . 0 1 T it follows from
identity (17) that

+ [b(t)jdt)} = 6I, 0.i O

and therefore, by (33')

L (Y,')- V(s;) = f W'(t)F(,t)dt < 0

Since i (t 0 and F(),t0 > 0. 0 < t - T, it also follows that
(39) f) W0"()F(Zt)dt > 0,

thus the equality in (37) is established.

Similarly, (33') and (39) imply that

j L (.:,: 0

and therefore, by (17)
CI

i t) z .( ) F ( , f t ) - 7 6 ( 2: W t ),t 1 d t > 0 .

Since 5(') > 0 and F*(Zi ,!) + [P7(biy__ )] ! 0, 0 <:. 7 w, ha%'f 5'U(t i.W(k -) V IW'b(z(ti.tfldr

and thus tie equality in (381 is established. lii

IHILO1FEM 6 (Kuhn-fucker Conditions) Assume that (3s, and (36) are satisfied i1
Primal Problem A. Then under the Constraint Qualilication i .an opli mal soliui(n 0 and (inl
if there exists an m-vector function K-, such that

(i) I6z, W,)t) 0 IV (t) .0 T T

(Ii I L '(t)l * z, 't 11 c 0 h 5 ), t)I I(t = 0

(110 f '(,)F(3Z,,di 0)

(i v) |.( 0,' 0 t t Tand 4' = 0. t > 7

PRO)W ):

t- ' ' ; tt l, 4 !h t' ( i i o E'l .,. H) , ,, ', . .'. , ,

ttliu.
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Sufficiency: Let z be feasible for Primal Problem A. Then since V is concave

V(z) - V() < 8 V(2;,z - D
J O z(t) - i(t) - )dt.

Since z(t) ) 0, 0 < t < T, it follows from conditions (i) and (ii) that
V(z) - V() - z(t) -()]'F*(zitdt,

and by (18), (25) and Fubini's Theorem (9]
f 1z(0t - f,()F-:,4,dIz)-~']F~,d = f i"(/)SF(z, - :)t

By (i), (iii) and the concavity of F,

= - 4'(t)F(ztdt

which is nonpositive since ) > 0 and I(z,i) >, 0, 0 < t < T. Thus, V(- ) < V(Z) and is
an optimal solution for Primal Problem A. Q.E).

7. EXAMPLE - WATER STORAGE PROBLEM

In the water storage problem posed in [41, the hydroelectric company incurred a pcnalty 1t
it could not meet a prescribed demand for power. This penalty was characteri,'ed in the obec-
tive function

I ri(D(t)- P )dr

where [0,] represents a planning period of specified duration, D(t) is the demand rate, P(t)
is the production rate of hydroelectric power, and (1 is the penalty function which was assumed
to be strictly convex. The imposition of such a penalty favors the consumer or a niddlcman
utility company which retails electric power to the consumers. In short, it characterizes a
"buyers market."

If there is, in fact, a pending energy crisis, it seems appropriate to consider a "sellers
market" where the demand for power exceeds production capacity and a premium is paid to the
hydroelectric company for any power which it produces beyond some prescribed le',el. In the
case where the hydroelectric company is supplying power directly to the consumer, these premi-
urns may take the form of increasing prices per unit beyond some allotment level When the
hydroelectric company is supplying a middleman, the premiums may represent an incentive pol-
icy which encourages maximum production during peak demand periods

The premiums to the hydroelectric company will be represented by

f.7r (Pt) - A(t0)dt

where (0,T] represents the planning period, P(t) is the power production rate, .4 (1) is [ic
prescribed aggregate allotment or incentive level, and ir is the premium function which is
assumed to be differentiable and concave with a positive slope at zero.

For the dynamics of the problem, we assume a confluent system of rivers supplying water
to a hydroelectric plant on the main stream with r of its tributaries also having their own
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hydroelectric plants. The variables and parameters which relate to the dam, reservoir and plant
on the main stream will be subscripted by 0, and those for the r dammed tributaries by j.

1 r.

We let 1 , denote the initial store of water in reservoir j and 0, the capacity of reservoir
The rate of spillage and rate of discharge through the turbines of dam j at time t are denoted by
s,(t) and d,(), respectively. The rates of inflow of water into the reservoirs on the dammed
tributaries are ,(t.= 1,.... r, and that into the main reservoir from its undammed tribu-
taries is t).

It is assumed that it takes o,, j I. r units of time for the water released from dam
# to reach the main reservoir and that there is no spillage or discharge through the dams on the
tributaries for at least it units of time prior to the start of the planning period, where
a max aj. The store of water in reservoir j at time t can then be expressed as

1',(1) = 11 + f .I') - .' ) - d,(0') dl'

for I = 1. r, and

W,( f, + f. }1,101- s,)(') -d)(!') +- (S,(.i' - a,) + d,(t' -- ct,)) 1
I di'

for the main reservoir.

The power production rate for a given rate of discharge d is assumed to be proportional to
d. In [41, it was necessary to assume the factor of proportionality to be unity. Htere we allow
this factor to be proportional to the head of water in the reservoir, an assumption which is con-
sistent with constant turbine efficiency. The head is the difference h between the surface level
of the reservoir and the tailwaters below the dam and is therefore dependent primarily upon the
store of water W in the reservoir.

The relationship between h,(), the head of reservoir j, and W,(t) will be represented by
h,(t) - h ( W,()), where h* is an increasing concave differentiable function. The functions
h, owe their concavity to the shapes of the reservoirs which are assumed to yield a continu-
ously disproportionate increase in reservoir surface area as the store of water increases. The
production rate for the jth hydroelectric plant is then expressible as

p,() - d,(0) o h, ( W,()).

in which case the production rate for the entire system becomes

PiO) .p, t.

Assuming the role of the hydroelectric company. we want to select our water storage po-
icy (s d) so as to maximiue the premium payments over the planning period This problem
takes the form

maximiie

iii
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subject to
0 < s,() < 3,(G)

0 d,() 4,

0 < w,0t)< ,

0. r, and

.4 (t) < P(t)

for 0 < t (< T, where 3,0t) is the maximum allowable spillage rate through dam iand 4) is the
turbine capacity of plant j.

Through proper association of the terms of this model with those of Primal Problem A it
can be shown through application of Theorem I that feasibility ensures the exiStencL (it' all
optimal water storage policy which will maximize the total premium payment

REFERENCES

III Farr, W.ll. and M.A. Ilanson. "Continuous Time Programming with Nonlinear ('on -
straints," Journal of Mathematical Analysis and Applications 45, 96-115 (1974)

121 Farr, W.11 and M.A. Ilanson. "Continuous Time Programming with Nonlinear Time-
Delayed Constraints." Journal of Mathematical Analysis and ,\pplications 46. 41-60
(1974).

131 (irinold. R., "Continuous Programming Part One: Linear Objectives." Journal of
Mathematical Analysis and Applications 28, 32-51 (1969).

141 Koopmans. T.C., "Water Storage in a Simplified Ilydroelectric System." 15liccding" o, t/n
1 rsi Inu'ritational ('otl/erenc' on ()lperational Re'war(h. M. I)avies, RI . tddison and I
Page, IEditors ()perations Research Societv of America, Baltimore, 1957).

151 Kuhn. II W. and A.W. Fucker, "Nonlinear Programmiing," Procd/inhs ol tlie .cmoiid BclAc-
'Ii .Simpovilln oil .Afit/llumlti S atistwi. ald I'totahhla'/s. 481-492. J Nc\tman, I ditot

(UIni',ersity of California Press, Berkelev. 1951 )
[61 Levinson, N., "A ('lass of' Continuous Linear Programming Problems," Journal of

Mathematical Analysis and Applications /6. 73-83 (1966)
171 Luenberger, D.(., Optirnizaion hv Vector Space Aet/hods (Wile%,. New York, N Y 1969)
181 Rockafellar. R.T.. ( ontvex 4nalvsi (Princeton I niversity, Princeton. New Jerey 1970)
191 Royden, iI.L., Real .4nalsts (MacMillan, New York, 1968)

[101 [aylor, A L , Introd tion to 'fun notal ,halVers (Wiley. Nem, Nork, N Y , 1958)
Ill1 I angwill. W I u, ,onhoncar Progranmin., ,4 Unfted 4pproamh (Prentice lall. I-nglewood

Cliffs, New Jersey. 19691



EQUALITIES IN TRANSPORTATION PROBLEMS AND
CHARACTERIZATIONS OF OPTIMAL SOLUTIONS*

Kenneth 0. Kortanek

Department of MAathematics,

Carnegie-Mellhn Unversti
Pittsbrgh. Pennsylvania

Maretsugu Yamasaki

Department o" Mathematics
Shimane Universto

Matsue, Shimane, Japan

ABSTRACT

I hi, paper considers the classical finite linear transportation iohblern (1 and
two relaxations. (11) and (li1, of it based on papers b. Kanoro%'ich and Rubin-
stein, and Kretschmer. Pseudo-metric type conditions on the cost matrix are
given under which Problems () and (l1) have common optimal value, and a
proper suhset of these conditions is sufficient for Problems (III and (Ill) to
have common optimal value The relationships between the three problems
provide a proof of Kantorovich's original characterization of optimal solutions
to the standard transportation problem having as many origins as destinations
[he results are extended to problems having cost matrices vhich are nonnega-
live row-column equivalent

1. INTRODUCTION WITH PROBLEM SETTING

Over 25 years ago Kantorovich in his classic paper, "On the translocation of masses" [4].
formulated generalized transportation problems which are continuous analogs of the well-knovn
transportation problem in the theory of finite linear programming, lie raised the question of
characterizing optimal solutions to those problems whose finite dimensional versions have the
same number of origins as destinations. As is well known, optimal solutions to the standard
finite dimensional transportation problem having "im" origins and "n" destinations are charac-
terized by means of a system of linear inequalities involving ,n row numbers and n column
numbers which together comprise a feasible list of dual variables.

Within the finite dimensional context m = n, Kantorovich's goal was to use only n
numbers in a linear inequality system characterization of an optimal solution rather than the
standard 2n (row plus column) numbers. In order to accomplish this, three conditions defining
a pseudo-metric were imposed on the cost coefficient matrix. Actually, the triangle inequality
condition on unit costs is what Ciomory and Ilu later termed "reasonable costs" in their network

"The work of the firsi author was supported in part hy National Science I.oundaiin (irants I N( ,67- I01I and
EN(i78-25488
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studies 131, Section 2. Violation of this particular condition is also related to the "more for less"
paradox in the transportation model, see Ryan 171.

The original application of the pseudo-metric conditions involved subtleties which "ere
later clarified in Kantorovich-Rubinstein 15] but for a transformed version of the standard tran-
sportation problem, which we state as Problem Ill in the next section. In attempting to give a
proof of Kantorovich's characterization, Kretschmer 16] introduced yet another transformation
of the standard problem, which we shall term Problem II in the next section.

The basic purpose of this paper is to delineate the key relationships between these three
problems: the standard transportation Problem I, the Kretschmer transformed Problem II, and
the Kantorovich-Rubinstein Problem Ill. The results we obtain depend on how the three
pseudo-metric cost conditions, denoted (C.I) through (('.3) in Sections 3 and 4, are coupled
together.

Our main application is to obtain a proof of the originally sought for characterization of
optimal solutions of the standard transportation problem where the number of origins equals
the number of destinations. We are not prepared at this time however to state that we haxe
industrial or public sector applications of the type II or type Ill transportation models.

2. THE KANTOROVICH-RUBINSTEIN AND KRETSCHMER TRANSFORMS
OF THE STANDARD TRANSPORTATION PROBLEM

Let c,,, a, and b,(i = I . n, j = 1. n) be nonnegative real numbers and assume
that a, and b, satisfy

fl n
.a,= £b, > 0.

The original transportation problem may be expressed as follows:

(I) Determine the minimum value Mof

(1.2) ,

subject to the condition that x, are nonnegative and

(1.3) .x,, = a, (i = I. n).
/-I

,= b, (j= I . n).

Let us consider the following transportation problems which were studied in 151 and 161:

(11) Determine the minimum value Nof

(14) ,(x,, + yd
-I i-I

subject to the condition that x,, and v,, are nonnegative and

(x,,- v,,) - a, ( - I. n).

x,-v,,) - h, Qj .. n).



EQUALITIES IN TRANSPORTATION PROBLEMS 591

(111) Determine the minimum value V of

(1.6) 11 " zu
i-I j-I

subject to the condition that zy are nonnegative and

(1.7) . .. a- b, (1=1 . n).
j-I j-I

Program I of course is the classical transportation problem which may be solved by the
well-known row and column number method (11,121) and other more modern, large scale pro-
gramming methods. The row and column number method easily extends to solving Program 11.
On the other hand, the structural matrix of Program IlI is a network incidence matrix, and so
Ill is an uncapacitated network problem.

It is clear that V < Mand N < Mand in this sense Problems 11 and Ill are relaxations of
Problem I. We shall study when one of the equalities V - N, V = M, and M = N holds.

3. THE EQUALITY N = V OF PROBLEMS 11 AND III

First we have

LEMMA 1: The inequality V < N holds if the following condition is fulfilled:

(C. 1) cy - c, for all i and j.

PROOF: There exists an optimal solution x, and Y, of Problem (11), i.e., x, and Y, are
nonnegative and satisfy (1.5) and

N- . C c(X" + y,

Then

+ ,- I xi + - a, - bi.

Taking zj - xi + yj,, we see that zij are nonnegative and satisfy (1.6), so that by condition
(C. 1)

V < , c,, Z - N.
i-I j-I

THEOREM I: The equality V - N holds if condition (C. I) and the following condition
are fulfilled:

(C.2) ci, - 0 for all i.

PROOF: There exists an optimal solution zi, of Problem (1i1), i.e., z,, are nonnegative
and satisfy (1.7) and

I-I i-i
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Then
n n
z+ b, =: z,, + a, =d, > 0.

i-I i-I

Let us take x,s - 0 if i ; j and x,, = d, and put y, = zj,. Then x,, and y, are nonnegative and
satisfy (1.5), so that

N <1 c, C(x, 1+y,,)=Z C,Z = V

by conditions (C.1) and (C.2).

We show by an example that the equality N = V does not hold in general if we omit con-
dition (C.2).

EXAMPLE 1: Let n = 2 and take

CII = (22 = I, C12 = = 2,

a,= 1, a2 = 2, b, 2, b, = i.

Then we easily see that V = 2 and M = N = 4.

4. THE EQUALITY M = N OF PROBLEMS I AND I!

Next we show that the equality M = N does not hold in general even if both conditions
(C.l) and (C.2) are fulfilled.

EXAMPLE 2: Let n = 3 and take

('1 = (22 3 0, tl2 = C21 20,

C l3 = C 331  = C'23 = ('32 = I -

a, = 3/2, a2 = 1/2, a3 = 1/4,

b = b2= 1. b3 = 1/4.
By special methods of linear programming (see, for instance [11), we see that M = 1 and an

optimal solution of Problem (1) is given by x11 = 1, x 22 - 1/2 x12 = X13= X12 - i/4 and
X21 - X31 - X23- X3- 0. We have N - 1. An optimal solution of Problem (ii) is given by
X1i - 1, X 22 - 1/2, x13 - x 1 2 = 1/2, X 1 2 - x 2 1 = X23 - - X.13 - 0, YK. - 1/4 and y, - 0 if
(i. j) * (3, 3).

Our main result is the following one.

THEOREM 2: The equality M - N holds if the following condition is fulfilled:

(C.3) c, < c,, + ,, + c. for all i, j. p. q.

PROOF: There exists an optimal solution x, and .v, of Problem (11). In case
Zj - x') - yu is nonnegative for each i. j. we see that z,, is a feasible solution of Problem (I). so
that

< Cl c z,,j c,,(, + v,,) - N.
-I ,-I ,- I ,-I
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We consider the case where some xij - y,, are negative. We may assume that min(x,,, yj) - 0
for all i and j. There exist p and q such that 0 x < y,. Then we have by (1.5)

x,> yp and x, > Yp.
i-I j-I

Let us define A,, B and d by

Ap -B4 =0,

A, = Xqypq/xq (i p), Bj =x,,yp/X, (.j q),
i-I j-1

d, = ABj/ypN.

Then

(4.1) dj ,4, := xq, d, - B x,,,
j-i-I

(4.2) t Ai - 1 B, = y,.
i-i j-i

We define xi' and yi by

(4.3) x, = x,J + d,) if i ;6 p and j 7- q,

x - x.,- B, if j q,

YU -yUj ifi por j ;0 q,

X;q - yp- 0.

Then x,, and y are nonnegative and satisfy (1.5) and

N T t t ci(x,, + Y,',)
i-I j-I

c, (x, + y,~) + d, [ q - c,., - cp, - c.jJ
i-I j-I i-I

1: q,,(x,, + y,,) - N
-I 1-I

by condition (C.3). Repeating the above procedure (4.3) a finite number of times,t we obtain
x' which are nonnegative and satisfy (1.3) and

M < . 1_ q ( + y,,) - N.
I-I j-I i-I j-I

Hence, M - N.

THEOREM 3: Let k ,, f, and g) be nonnegative numbers and assume that condition
(C.3) holds for kj instead of c,j. If q - k1, + f, + gj, then M - N.

'This number is at most the number of (y, > 01.
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PROOF: Denote by M(k) and N(k) the values of Problems (I) and (11) respectively if
c, are replaced by k,,. Then we have M = M(k) + Ct with

n n
C1 -z ja, + Y. g, b,

Let x, and+y,, be nonnegative and satisfy (1.5) Then

c, ,(,, + y,),= , k,,(x,, +.v,,) +

a, + + I +

>_ k,,, +v,,) + C,, > N(k) + C,.
i-I j-I

Thus, N > N(k)+ (,. Since N(k) = MW(k) by Theorem 2, we have N > A(k) +
CfX - M, and hence M = N.

As is well known, two transportation problems of type (1) with costs {c,,I and
{c,, + ./1 + g,} respectivel), are equivalent for any list of real numbers {.A, 1g, i = 1. ,i
j I ..... n. The following example shows that the nonnegativity of all the J, and g, is
required in Theorem 3.

EXAMPLE 3: Let n = 2 and take kll= 0, k 12 = 1/2, k 21 = 1/2, k 22 = 0, al= 1, a,- I,
b,- 1/2, b2 - 3/2, f, = I, .1'2 = -5/2, gi = 2, g2 = 7/2. Then, M(k) - N(k) = 1/4 while
N - 9/2 < 5 - M.

5. KANTOROVICH'S THEOREM FOR PROBLEM (1)

The finite version of Kantorovich's Theorem 141 can be written as follows:

A feasible solution x of Problem (1) is an optimal solution if and only if there exist
numbers u, such that

(5.1) 1u, - u,I < c,, for each i. j,

(5.2) u,- u,= c,, if x,, > 0.

We show that this theorem is not valid as it stands. In fact, let us recall Example 2 and
let x,, be the optimal solution obtained there. If there exist numbers u, which satisfy (5.1) and
(5.2), then we must have

U 1 - U2 = -'12 = 20,

U3 - U 2  /-'32 I -

U1  U '3 C11  -- 1.

This is impossible.

In order to give another proof of Kantorovich's Theorem. Kretschmer considered Prob-
lem (1i) and asserted N - M without any assumption. Notice that N < M in Example 2.



FQ \t.1111S IN IR.\NS'O(R \I II)N PROI I MS 595

Kantorovich's Theorem was amended by Kantorovich and Rubinstein [5- Theorem 31 in
the following form:

THEOREM 4: Assume that conditions (C.1), (C.2) and (C.3) hold. Then a feasible
solution v,, of Problem (1ll) is an optimal solution it' and only if there exist numbers u, which
satisfy (5.1) and (5.2).

Under conditions (C.I) and (C.2), the dual problems of Problems (il) and (Ill) coincide
and Theorem 4 is an immediate consequence of the well-known duality theorem applied to
Problem (11). Thus, condition (C.3) can be omitted in Theorem 4.

Notice that conditions (C.), (C.2) and (C.3) hold if and only if the cost c, is a pseudo-
metric, i.e., c, satisfies conditions (C.1) and (C.2) and the following condition

(C.4) c, cA + ck, for all i, j. k.

With the aid of Theorems 2 and 4, we have

THEOREM 5: Assume that conditions (C.1), (C.2) and (C.3) hold. Then a feasible
solution x, of FPoblem (I) is an optimal solution if and only if there exist numbers u, which
satisfy (5.1) and (5.2).

ACKNOWLEDGMENT

We are indebted to a referee for helpful comments, weakening the original assumptions of
Theorem 2, in particular.

REFERENCES

[II Charnes, A. and W.W. Cooper, Management Models and Industrial Applications o/ Linear Pro-
gramming, land II, (J. Wiley and Sons, New York, N.Y., 1961).

12] Dantzig, G.B., Linear Programming and Extensions, (Princeton University Press, Princeton,
1963).

[31 Gomory, R.E. and T.C. Hu, "An Application of Generalized Linear Programming to Net-
work Flows," Journal of the Society for Industrial and Applied Mathematics, 10, 260-283
(1962).

[41 Kantorovich, L.V., "On the Translocation of Masses," Management Science, 5, 1-4 (1958).
(English translation of Doklady Akademii Nauk USSR, 37, 199-201 (1942).

[51 Kantorovich, L.V. and G. Sh. Rubinstein, "On a Space of Completely Additive Functions,"
Vestnik Leningrad University, 13, 52-59 (1958) (Russian).

[61 Kretschmer, K.S., "Programmes in Paired Spaces," Canadian Journal of Mathematics, /3,
221-238 (1961).

[71 Ryan, M.J., "More on the More for Less Paradox in the Distribution Model," in Extrernal
Methods and Systems Analysis, An International Symposium on the Occasion of Profcssor Abra-
ham Charnes' Sixtieth Birthday, A.V. Fiacco, K.O. Kortanek (Editors), 275-303, Volume
174 of Lecture Notes in Economics and Mathematical Systems, Managing Editors: M
Beckmann and H.P. KUnzi, Springer-Verlag, Berlin-Heidelberg-New York, 1980.



A NETWORK FLOW APPROACH FOR CAPACITY
EXPANSION PROBLEMS WITH TWO FACILITY TYPES

Hanan Loss

Bell Laboratories
Holmdel, New Jersey

ABSTRACT

A deterministic capacity expansion model lor two facility types with a finite
number of discrete time periods is described. The model generaliles previous
work by allowing for capacity disposals, in addition to capacity expansions arid
conversions from one facility type io the other. Furthermore, shortages of
capacity are allowed and upper bounds on both shortages and idle capacities can
be imposed. The demand increments for additional capacity of an% ispe in an%
time period can be negative. All cost functions are assumed to be piecewise.

concave and nondecreasing away from zero. The model is formulated as a
shortest path problem for an acyclic network, and an efficient search procedure
is developed to determine the costs associated with he links of this network

INTRODUCTION

In a previous paper [9], we described a deterministic capacity expansion model for two
facility types. The model has a finite number of discrete time periods with known demands for
each of the two facilities in any period. At the beginning of each period, facility i(i = 1,2)
may be expanded either by new construction or by converting idle capacity of one facility to
accommodate the demand for the other facility.

In this paper, we extend our previous work by allowing for the reduction of facility size
through capacity disposals. Furthermore, shortages of capacity are allowed and upper bounds
on idle capacities and shortages may be imposed. These generalizations allow us to deal with
more realistic situations. Capacity disposals are often initiated due to high holding cost of idle
capacity when the cumulative demand decreases over some successive periods. Capacity shor-
tages may be attractive when capacity may be temporarily rented or imported from other
sources. Also, in some applications it may be economical to permit temporary shortages and
pay a penalty for unsatisfied demand, rather than expanding the facilities at that time. Finally,
upper bounds on idle capacity and shortages are usually imposed by management.

The costs incurred include those for construction of new capacity, disposal of existing
capacity, conversion, holding of idle capacity, and for having capacity shortages. As in 19],
conversion implies physical modification so that the converted capacity becomes an integral part
of the new facility and is not reconverted automatically at the end of the period. The capacity
expansion policy consists of timing and sizing decisions for new constructions, disposals, and
conversions so that the total costs are minimized.

597
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[he model is useful for communication network applications, such as the cable sizing
problems examined in [9]. Suppose the demands for two cable types is known for the next T
periods. Furthermore, suppose the more expensive cable can accommodate both demand
types, whereas the cheaper cable can be used only to satisfy its associated demand. Since the
construction cost functions are often concave, reflecting economies of scale, it can become
attractive to use the more expensive cable for future demand for both cables. Thus, careful
planning of the expansion policy is needed. A similar application is the planning of capacity
expansion associated with communication facilities which serve digital and analog demands.
Other areas of applications include production problems for two substitutable products, and
inventory problems of a single product produced and consumed in two separate regions see 19]
for more details.

Many capacity expansion models and closely related inventory models have been
developed for the single facility problem with a finite number of discrete time periods. The
first such model was proposed by Wagner and Whitin [131 who examined a dynamic version of
the ecunomic lot size model. Many authors extended this model; for example, Manne and
Veinott [11], Zangwill [16] and Love [8]. Zangwill used a network flow approach, and Love
generalized the model to piecewise concave cost functions and bounded idle capacities and
shortages.

Several models and algorithms for two facility problems have been developed. Manne
110), Erlenkotter 11,21, Kalotay [51, and Fong and Rao 131 examined models in which it is
assumed that converted capacity is reconverted automatically, at no cost, at the end of each
period. Kalotay [6], Wilson and Kalotay [14], Merhaut [12], and Luss [91 examined models in
which converted capacity is not reconverted automatically at the end of each period.

In Section 1 we describe the generalized model. The algorithm in [91 is extended and
used to solve the new model with the additional features described before. In Section 2 a shor-
test path formulation is presented, and in Section 3 some properties of an optimal solution are
identified. These properties are used to compute the costs associated with the links of the net-
work constructed for the shortest path problem. In Section 4 the solution is illustrated by a
numerical example, and some final comments are given in Section 5.

1. THE MODEL

The model assumes a finite number of discrete time periods in which the demand incre-
ments, new constructions, capacity disposals, and capacity conversions occur instantaneously
and simultaneously immediately after the beginning of each period. We define the following
notation:

i - index for the two facilities.

I - index for time periods (t = 1, 2,... T) where Tis the planning horizon.

r,, - the increment of demand for additional capacity of facility i incurred
immediately after the beginning of period t. The r,,'s may be negative, and
for convenience are assumed to be integers.

'2
R,( 11,t 2) - " r,,, for tn < 12-

x1 - the amount of new construction (x,, > 0), or capacity disposal (x,, < 0),
associated with facility i immediately after the beginning of period t.
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y1 - the amount of capacity converted immediately after the beginning of period
. y, > 0 (y, < 0) implies that capacity associated with facility I (facility 2) is
converted to satisfy the demand of the other facility. Once con, erted, the
capacity becomes an integral part of the new facility.

I,, - the amount of idle capacity (I,, > 0). or capacity shortage (/,, < 0). associ-
ated with facility i at the beginning of period i (or equivalently, at the end of*
period t - 1, t = 2,3. T + 1). We assume that initially there is no idle
capacity or capacity shortage, that is, /,I = 0.

- lower bound on I, that is, the maximum capacity shortage of facility i
allowed at the beginning of period t; the I,,'s are assumed to be integers and
-00 < <_ i< 0.

w,, - upper bound on the idle capacity of facility i at the beginning of period t.

The w,'s are assumed to be integers and 0 < w,, < .

c,,(x,) - the construction and disposal cost function for facility i at time period t.

g,(Y,) - the conversion cost function at time period t.

h 1 (,,+ 1 - the cost function associated with idle capacity, or capacity shortage, of facil-
ity i carried from period t to period t + 1.

All cost functions are assumed to be concave from 0 to o- and from 0 to -oo, but not
necessarily concave over the entire interval [-co, c]. Such functions are called piecewise con-
cave functions, see Zangwill (151. All cost functions are also assumed to be nondecreasing
away from zero; for example, c,,(xi,) is nondecreasing with x, for x, > 0, and nondecreasing
with -x,, for x,, < 0. For convenience, we assume that c,,(0) = g,(O) = h,,(O) = 0.

The problem can be formulated as follows:

(1.1) Minimize c,,(x,) + h, (I, + g,Oy,)]

(1.2) 1I.,+, = I, + X, - y,- r,

(1.3) 12.,+1= 12, + X 2, +Y,- r2,

(1) t , 1,2. T

(1.5) I,t - 0

(1.6) /I.r+ - 0

The objective (1.1) is to minimize the total cost incurred over all periods. Equations
(1.2) - (1.3) express the idle capacity or capacity shortage I,,+ as a function of I,, the actions
undertaken at period t, x,, and y,, and the demand increments r,. Constraints (1.4) specify the
bounds on idle capacities and capacity shortages, and Equation (1.5) is introduced by assump-
tion. Constraint (1.6) l,. II - 0 implies that idle capacity or capacity shortages are not allowed
after period T Such a constraint is not restrictive since one can add to problem (1) a fictitious
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period T'= T+ 1 with r,7 = maxR,(l t) - R,(l,T) (yielding R,(IT') > R,(1,t) Vt),

,r- O,wr, = co and C,r'() - h,r () gr'(') = 0. (IT is fixed at zero since no shortages are
allowed at the end of period T). This allows us to fix 1,.r,+1 at zero since then there always
exists an optimal solution with 1,r'+ = 0. To simplify notation, we assume that period T in
formulation (1) is the added fictitious period.

The constraints (1.2) - (1.6) form a nonempty convex set. Since each term of the objec-
tive function is nondecreasing away from zero with a finite value at zero, there exists a finite
optimal solution. Furthermore, suppose each of the variables x,,, y,, and I,, is replaced in for-
mulation (1) by the difference of two nonnegative variables, for example, x,, = x,, - x',, where
x, > 0 represents constructions and x,,' > 0 stands for disposals. In that case, the objective
function becomes concave on the entire feasible region, hence, there exists an extreme point
optimal solution. From Pages 124-127 in Hu [41, the constraints (1.2) - (1.3) are totally uni-
modular. Thus, since r,,, 1,, and w,, are assumed to be integers, such an extreme point solution
consists of integers. In the next sections we describe an algorithm which finds an optimal
extreme point solution.

2. A SHORTEST PATH FORMULATION

Since all cost functions are nondecreasing away from zero, it can be shown that there

exists an optimal solution in which

(2) I,I K max[RI(r 1 ,T) + R 2 (r 2.T)] = b Vi. t.
rl'r 2

Howevec, usually, better bounds than those given by (2) can be assigned. To simplify the
presentation, we assume that the lower and upper bounds on the 1,, variables satisfy w, < b
and I,, > -b for all values of i and t.

Generalizing the concept of capacity point in [9], we define a capacity point as a period t in
which I,, - 0, or I,, or w, for at least one value of i. Since an extreme point optimal solution
consists of integers, the set of capacity points is defined as follows:

(3.1) i1 = 12, = 0

(3.2) I, = Ii,, 0,w 1, and 12, = 12,, 0,w 2, }
(3.3) 11, = 1,.0, wl, and 12, = 12, + 1 ..... , 1. W2.,-

(3.4) 12, = 12,,0,w2, and 11, = I, + 1. -1, 1, w.,
t =2, 3... T

(3.5) 1.r- = 12.T+1 = 0.

The capacity point values can be conveniently specified by a single paameter r, For
example, s, - 1.2. 9 can be used to specify the combinations given )y (3.2). etc. A
complete example of a special case can be found in [9].

The set of capacity points can be limited to those satisfying

(4) (4.1) 11, + 12, < R(t, T) + R2(tT)

(4.2) I, + 12, >1 -max 1R(rlt- 1) + R 2(T2,t- 1)1.
TI.rT? I I

_ _ -.-. ~. . .
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Equation (4.1) states that the total idle capacity at the beginning of period t does not exceed the
cumulative demand from period t to T Equation (4.2) restricts the maximum capacity shor-
tages to the maximum demand increase from any period prior to t - I up to period -

Clearly. there exists an optimal solution which satisfies (4).

We now describe a shortest path formulation which can be used to solve Problem (I
Let

d,,, (a ,,.a, ) - the minimal cost during periods u, u- +I ,....v associated with an
extreme point solution of (I) when u and v + I are two successive capacity
points with values defined by aY,, and av+ I. More specifically:

(5) a,1 minimum~~f c('1 x, + /1, (I,,. 1) +gj)
IH I [,ujl J J

such that

(i) Constraints (1.2) and (1.3) are satisfied for t = u,. u + 1l ,

(ii) , < I,, < w,, and I, 2 0 for i = 1.2 and = u + 1 u + 2 ... v.

(iii) I,, and 2,, are defined by (x, and tI and 12 ,, are defined by (t,.

(iv) v,, and j,, for t = u, u + 1 .... v satisfy the necessary conditions (to be developed
later) for an extreme point solution of ( I ).

Suppose that all subproblem values d,.(,,..,, i) are known. The optimal solution can then
be found by searching for the optimal sequence of capacity points and their associated values.
As shown in Figure 1, Problem 1 can be formulated as a shortest path problem for an acyclic
network in which the nodes represent all possible values of' capacity points. Each node is
described by two values (, a,) where ( is the time period and at, is the associated capacity point
value. From each node (u,a,1 ) there emanates a directed link to any node (v + I.o,, 1 ) for
v > u with an associated cost of d,.(a,,, ).

Let C, be the number of capacity point values at period i. Clearly, ( = ( = 1. and (
for all other periods can be obtained from Equations (3) and (4). The total number of links .N

in the shortest path problem is

(6) N= C,1 C,

Since most of the computational effort is spent on computing the dv,,(a,,.,, i values. It IN

important to reduce N, if possible. One way, of course, is to reduce the values ol ( 0h1ough
the imposition of appropriate bounds I,, and w,,.

The shortest path problem can be solved using various algorithms Since the nctwork Is

acyclic a simple dynamic programming formulation can be used l.et k. be described b. thc set

of integers 1.2 ..... C, where t, = I represents /1, = 12, = 0. Furthermorc. let t,(,. I he the
cost of an optimal policy over periods t, t + I .. ,T, given that period t is i capacM p)int,

and that I, and 12, are specified by r,. The following dynamic programming formulation s

then obtained:

(7) /,(a,,) = min Id,,X,,(1, ) + .',. (6, ,l.

u=T.T- 1.

= 1,2..... .
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FIGURE 1. The shortest path formulation

The first term of the minimand is the minimum cost of the optimal policy during periods u,
u + 1 .... v, given that u and v + I are two successive capacity points with values a, and
av+I. The second term is the optimal cost for periods v + 1, v + 2 . T, given av+t.

3. SOLUTION OF THE SUBPROBLEMS duv(a,,a,+l)

Most of the computational effort is spent on computing the subproblem values. As shown
in (91, when r,, > 0, x,, > 0, 1, - 0 and w, - o for all iand t, the subproblems are solved in a
trivial manner, however, when the r,,'s are allowed to be negative the effort required to solve
the subproblems increases significantly. The additional modifications needed to solve the sub-
problems d,,v(a.,a,+I), as defined by (5) for the generalized model, require a more careful
analysis than needed in (9], however, the resulting computational effort appears to be about the
same.

To compute the subproblem values d,, (a,,, +I), it is convenient to describe Problem (1)
as a single commodity network problem. The network, shown in Figure 2, includes a single
source (node 0) with a supply of R,(l,T) + R2 (l,T). There are 2T additional nodes, each
denoted by (i) where i specifies the facility and t specifies the time period. At each node (ii)
there is an external demand increment r,, possibly negative. The nodes are connected by links,
where the flows along these links represent the constructions, disposals, conversions, idle capa-
cities, and capacity shortages. The flows on each link can be in either direction, and the link
direction in Figure 2 indicates positive flows. The nodes are connected by the following links:

- A link from node 0 to each node (i,) with flow x,,. x,, is positive if the flow is from
node 0 to node (i0:), and negative otherwise.
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o 11,M+2 0

Du +0 Da 0~ 
,U+I0

FiGuRE 3. A network flow representalion of a subproblem

Let D, be the capacity change of facility i during periods u,u + 1..., v, that is:

(9) D, - ij.,,+I + R,(u, v) - /,,, i- 1,2

or, equivalently

(10) Di - 1 - Yt
[_U

D2 - X2, +yA

Let it and t2 be two time periods u 4 (lt2) - v. From the optimal properties (8) shown
above, the possible policies associated with an optimal solution to any subproblem duv(o,, 1)
can be restricted to three different policies. These policies are summarized in Table I below.

To illustrate the table, let us concentrate on the column D, < 0 and D2 > 0. Policy (a)
indicates a single disposal of D, capacity units of facility 1, and a single construction of D2 units
of facility 2. Policy (b) implies a single construction of D, + D2 of facility I if D: + 92 > 0, a
single disposal of D, + D2 of facility I if D, + D2 < 0, and a single conversion of D2 units
from facility I to facility 2. Obviously, if D, + D2 - 0, no constructions or disposals take
place, and if D2 - 0, no capacity is converted. Finally, policy (c) consists of a single construc-
tion of D, + D2 capacity units of facility 2 if D, + D2 > 0, a single disposal of D, + D2 units
of facility 2 if D, + D2  < 0, and a single conversion of -D, from facility I to facility 2.

The optimal solution of a subproblem d,,,(a,,,,+) is therefore obtained by the following
procedure:

(i) For each of the policies (a), (b), and (c) in Table 1, find the optimal values of tl and
t2, which minimize du (a,..a ) as given by Equation (5), while satisfying condi-
tions (i) - (iv) given below Equation (5). If no feasible values of t, and 12 exist, set
the value of the corresponding policy to o.
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TABLE 1. Possible Policiesj6r Optimal Subproblem Solutions

_D, 0 D, 0 1), 0 J)
Poliy D, > 0 D, > 0 D, 0 D, 0

-Ait1 = D1. xj, - 0 t ;d t construction disposal construction disposal

(a) X212 = D 2, x 2, = 0 1 ;4 t2  construction construction disposal disposal

x= D, + D 21 x1, = 0 1 d tj construction construction construction disposal

or disposal or disposal

(b y,, =D,, y, = 0 t ;e t2  conversion conversion conversion conversion

from I to 2 from I to 2 from 2 to I from 2 to I

x 2, - Vt

X2, D + D2, x 2, = 0 1 tr construction construction construction disposal

or disposal or disposal

(c) Y,2 = -DI, y, = 0 t 12  conversion conversion conversion conversion
from 2 to I from I to 2 from 2 to I from I to 2

x,= 0V ow

(2) Choose as the optimal policy the best of those found in Step (1). If none of the policies
is feasible, d,,(a,,a,,i) - -.

The procedure above may involve spending a significant amount of computation on
finding all feasible policies and comparing the costs associated with these policies.

4. A NUMERICAL EXAMPLE

As an illustration, we solve the capacity expansion problem shown in Figure 4
114 - 124 = 0 by assumption, thus, a fictitious period is not added. The cost functions are given
in Table 2 below.

The shortest path formulation is shown in Figure 5. The capacity point values are given
inside the nodes in terms of I, and 12, rather than a,. Using tquation (4.1). several tpacit ' %
point values ,ire omitted in periods 2 and 3. Furthermore, all links from period I = 1 to
periods t - 3 and 4 are omitted since there is no feasible solution to the associated subproh-
lems with /12 < 112 < W12 and 1t2 * 0. The number associated with each link is the optimal
solution of the corresponding subproblem. The shortest path is marked by stars.

Consider the subproblem d1 ((j. "' 2 ) where or, represents the capacity point %alue

I1 = 
121 = 0, and 12 represents I,, = I = 0. By E-quation (9), 1), = I and l). = I. Using

the results of Table 1. policy (a) yields .k x j = I with a total cost of 68, policy (h yields
xl = 2 and _v - I with a cost of 46, and policy (c) yields x), = 2 and jv = -1 with a cost ol
45. Hence policy (c) is the optimal one.

To illustrate further, consider d, 1 ta 2,, 4), where a' stands for I- - I and I 0, - 0. and
a 4 stands for 14 - 124 - 0, so that 1) - I and )' - 0 From 1able I. policy (a) implies thal
either x12 - I or I - I Ilowever, if xH - I (and x, - 0) then II- 0 so that d,,( I - ,

Hlence, policy (a) implies x - I with construction and holding cost of 43 2 Policy (b) yields
the same solution as policy (a), and policy (c) results in . - I and i. - I with a total cost
of 40.5. hence, policy Ic) is optimal for that subproblem
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FIGURE~ S The sihortest paih problem for Ihe example

Finally, consider dzj(~a 4a) with a 2 standing for 112 = 122 0, and a4 standing for
11, - '24 = 0. From Table 1, since D1 =- 0, all decision variables are zero in all three pol-
icies and the total costs incurred are equal to 9.

After solving the subproblems for all the links of Figure 5, the shortest path can be found
using the dynamic programming formulation (7) or any other shortest path algorithm. The
shortest path in this example is 54 and consists of two links. The first link connects node
Itl-/t = 11= 0 to node 112- 1 22 = 0, and the second link connects node 112 = I.2 = 0 to node
i4- 2 z=- 0. The optimal policy of the entire problem is x21 -- 2. v1 = -I, with all other
decision variables X,, and y, being equal to zero.

5. FINAL COMMENTS

This paper generalizes our previous work 191 by allowing for capacity disposals and capa-
city shortages. Furthermore, bounds on idle capacities and capacity shortages can be imposed
The model is formulated as a shortest path problem in which most of the computational effort
is spent on computing the link costs. Using a network flow approach, properties of extreme
point solutions are identified. These properties are used to develop an efficient search for the
link costs.

Further generalization,, may include bounds on new constructions and capacity disposal.
and operating costs which depend (In the facility type and time period As shown bh, several
authors, for example Lambrecht and Vander [-ecken 17!, bounded constructions o)r dispo~sals
complicate considerably even the single facility prohlem Introducing operating costs, ma>
require major changes in the algorithm since the amaount of each capacilt\ type used to ,,aitsh
the demand in each period affects the total cost
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Finally, negative costs for disposals (credit for salvage value) can be incorporated for cer-
tain cost functions c,(x,,) for which the optimal solution would be finite. For example, cost
functions in which the credit per unit of disposed capacity is always smaller than the construc-
tion cost per unit of capacity. In general, however, cost functions ,(x,,) that are negative for
x,, < 0 may result in an unbounded solution.
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ABSTRACT

This paper considers the problem of locating multiple new facilities in order
to minimize a total cost function consisting of the sum of weighted Euclidean
distances among the new facilities and between the new and existing facilities,
the locations of which are known. A new procedure is derived from a set of
results pertaining to necessary conditions for a minimum of the objective func-
tion. The results from a number of sample problems which have been exe-
cuted on a programmed version of this algorithm are used to illustrate the
effectiveness of the new technique.

I. BACKGROUND

It was as early as the 17th century that mathematicians, notably Fermat, were concerned
with what are now known as single facility location problems. However, it was not until the
20th century that normative approaches to solving symbolic models of these and related prob-
lems were addressed in the literature. Each of these solution techniques concerned themselves
with determining the location of a new facility, or new facilities, with respect to the location of
existing facilities so as to minimize a cost function based on a weighted interfacility distance
measure.

If one studies a list of references to the work done in the past decade involving facility
location problems it becomes readily apparent that there exists a strong interdisciplinary interest
in this area within the fields of operations research, management science, logistics, economics.
urhan planning and engineering. As a result, the term "facility" has taken on a very broad con-
notation tn order to suit applications in each of these areas. Francis and Goldstein 141 provide a
fairly recent bibliography of the facility location literature. One of the most complete
classifications of these problems is provided in a book by Francis and White 151.

*This work was supported by ihe National Research Council of Canada under Grant A4414 and by an Ontario (iradu
ate Scholarship awarded to Paul Calamai.
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This paper concerns itself with the development of an algorithm for solving one particular
problem in the area of facility location research. The problem involves multiple new facilities
whose locations, the decision variables, are points in E2 space. The quantitative objective is to
minimize the total cost function consisting of the sum of weighted Euclidean distances among
new facilities and between new and existing facilities. The weights are the constants of propor-
tionality relating the distance travelled to the costs incurred. It is assumed that the problem is
"well structured" [3].

The Euclidean distance problem for the case of single new facilities was addressed by
Weiszfeld [131, Miehle [101, Kuhn and Kuenne [81, and Cooper [1] to name a few. However,
it was not until the work of Kuhn [71 that the problem was considered completely solved. A
computational procedure for minimizing the Euclidean multifacility problem was presented by
Vergin and Rogers [121 in 1967; however, their techniques sometimes give suboptimum solu-
tions. Two years later, Love (91 gave a scheme for solving this problem which makes use of
convex programming and penalty function techniques. One advantage to this approach is that it
considers the existence of various types of spatial constraints. In 1973 Eyster, White and
Wierwille [21 presented the hyperboloid approximation procedure (HAP) for both rectilinear
and Euclidean distance measures which extended the technique employed in solving the single
facility problem to the multifacility case. This paper presents a new technique for solving con-
tinuous unconstrained multifacility location problems involving Euclidean distances.

2. PROBLEM FORMULATION

The continuous unconstrained multifacility location problem involving the 1,' distance
measure can be stated as follows:

Find the point Xr=(Xr, .. T)in E2, to

(P1) minimize f(X) - vjk I1Xj - Xk 11, + w, w j, - Aj lp
i<j<k<n j-I i-I

where

n A number of new facilities (NF's).

m A number of existing facilities (EFs).

XT - (Xi XJ2) A vector location of NFj in E2, 1 - . n.

A'- (aI a12) A vector location of EF, in E2, i - I. m.

Vjk A nonnegative constant of proportionality relating the I, distance between NF and NFA
to the cost incurred I < j < k < n.

w, A nonnegative constant of proportionality relating the I, distance between NF and EF, to
the cost incurred 1 j < n, 1 < i < m.

I 1XJ - Xk I1P - 0ixi - x, 1I + Ix12 - xk p21Ip a p distance between NF, and NFk.

IIX - Ali1, - (x 1 - a,,l' + Ix12 - a,21p)1P tAp distance between NF and EF,.

Note that we make the assumption that Vik - Vk, for jk - 1 ... n. Substituting p - I
and p - 2 in Problem PI respectively yields the rectilinear distance problem and the Euclidean
distance problem.



SOLVING MULTIFACILITY LOCATION PROBLEMS 611

For the purpose of this paper Euclidean distance will be the measure used between facili-
ties located as points in E2 space. The objective function becomes

minimize f(X) - 1 V : (x 11 - xkl) 2  (X 2 - 2

X I1j<k_<n

(P2) + Y . wj, ((x1 - a,1)2 + (Xi2 - ai2)2)/ 2.
j-1 i-I

The techniques presented in this paper can also be used for problems involving facilities located
in three-dimensional space.

3. NEW FACILITY CATEGORIZATION

If we consider a current solution to Problem P2 we can think of each new facility as being
in one of the following distinct categories:

(1) Unique Point (UP)

A new facility in this category occupies a location that differs from all other facility
locations.

(2) Coinciding Point (CP)

A new facility in this category occupies a location that coincides with the location of
an existing facility but differs from the current locations of all other new facilities.
Thus, each new facility in this category has associated with it some existing facility
which has the same vector location.

(3) Unique Clusters (UC 1 ... UCNuc)

All new facilities in the kth unique cluster (k = 1. NUC) occupy the same vec-
tor location. This location is distinct from all existing facility locations as well as the
current locations of new facilities that are not classified in this cluster.

(4) Coinciding Clusters (CC, .... ,CCN-c)

All new facilities categorized in the kth coinciding cluster (k = 1, . NCC) occupy
the same vector location. This location coincides with the location of some existing
facility and differs from the current locations of all new facilities that are not
classified in this cluster. Each of these coinciding clusters of new lacilities is there-
fore associated with some existing facility with which it shares a location.

If we define the index sets J A (1. n) and I A1..... m) and let the subsets
b(% CCo then the categorization can be restated as follows

Partition the set J into the subsets UP, CP, UCI . ( , ., ('(c where

(3.1) UP = V, JIA, * XJ e Xk; Vi E 1, Vk E - .ifl

(3.2) CP ={vE JIA, - X, e Xk; ij E 1, Vk E J -.

for I. . NUC

(3.3) uC. J V -u Uc A, X, - XkWv i E I, k E.! - U UCI

1 0!
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for#3 - 1,... NCC

(3.4) CCpA V E J U-0 CCIA X J } -

NUC A number of unique clusters.

NCC A number of coinciding clusters.

Note that

(a) New facility j coincides with existing facility ij for j E CP (from 3.2).

(b) The new facilities in cluster P coincide with existing facility i' for 0 - 1. NCC
(from 3.4).

In order to use this notation for the derivation of the new algorithm given in the next sec-
tion define a unit vector D in E2, as follows:

D T = (D( . DT)

where

(3.5) DJ= [al a2l, j = 1. n

and

1IDI12 = 1.

4. THE DIRECTIONAL DERIVATIVE

Using the notation given in the last section we can write the directional derivative of the
objective function at X in the direction D in the following useful manner:

dDf(X) - lim f(X + X D) -f(X)
X-0+

- Y [Gj'Dj]
jE UP

+ Y IGj •D, + wjj IIDj1I 21
jE CP

NUC

+ D, + vgI ID, -A12

-I JEUC I, k EUC, DlI 1
.VC(

(4.1) + I L' GDi+ Y.Vi I D, -D Dk112 + W,,I lID, I I
0 B C k Ej jJf

where
A~ (XJ - Xk) W (X - A)

(4.2a) G- - -p J VJ E UP

(4.2b) - Jk(Xj - Xk) w,(X - A,)

(j- I IX, - Xk11 2
+ EI IX, - A, 112
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(42c) GvJ( - Xk) w, (Xj-,) V E UC.

4qU(= . IIXJ- Xk 112 E1 IIX- A, I12  a = NUC

vA(X - Xk) w.,(X, - A,) VJ E CCp
(4.2d) aflC ( 1 A>Xj Xk + Y i- - A,112  , =...NCC

k qCCB  " '

It should be noted that in each case, the expression for G, is the gradient of that part of
the objective function f(X), which is differentiable with respect to X,. In the ca !e where
j E UP, the expression is the exact gradient with respect to X," in all other cases, the expres
sion for Gi can be considered a pseudo-gradient of .f (X) with respect to X,.

Since f(X) is a convex function, the point X* in E2,, is a minimum for this tunction i
and only if the directional derivative dDf(X* ) is nonnegative for all unit vectors D in Li,,. lhi,
fact will be used in the next section.

5. NECESSARY CONDITIONS FOR OPTIMALITY

THEOREM 1: If the following conditions are not satisfied at th poin' m .. , then thy
directional derivative given by expression (4.1) will be negative for ,,,iic Un.. :cr. [) r, L.

(5.1) (1) 11Gi11 2 = 0 V, E UP

(5.2) (2) IG, 112 < wJ, VJ E CP

(5.3) (3) for a = 1 ... NUC

III Gi12 (< 1 7, vJ/ vS CU(,
j(S JES kE[UC. - SI

(5.4) (4) for f = 1. NCC

I II G 112 1< I vik + W~, VT ,
j ET JET 11k E lCCoTJ I

PROOF: The proofs for conditions I and 2 are obvious.

Fr j R forjE S
For 3) set 1 Dj 0  forj qS

then df(X) - I GJ.R + Vjk IIRI12
j(s jES kEIlC,-Sl

- IIRI12III GJ, 2 cosO+ ; 1: VA.

I JES kE[UC.-SI

Therefore, dDf(X) > 0 VD only if
111: G112 < I I VJk WS C vC..
JEs JES AkElC.-SI

The proof for condition 4 is similar.
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6. UPI)AiE FORMULAS

As a result of the prececding optimality conditions the fo;Iowing update loimulas are con-
structed:

. ASE I: If 3j E UP such that IG,II 0 then the direction of steepest-ascent in the
subspace defined by X, is G, = G. We therefore use the following update formula toi Xj:

X, -xj-A G,

where

(6.1) VJk + Wi1I6A) j = - ,12 IX, - A,.112

CASE 2: If 3 j E CP such that IIGjII2 > wj,, then the direction of steepest-ascent in the

subspace defined by Xj is (.j = Gj. We therefore use the following update formula for X,

X-- x G id

where
v jk +wji

(6.2) kj = ,I(Xj-XkII 2  IA'1 --A jkjI 1X $k1 il Ijj -A 1
CASE 3: If 3S C UC,, a = 1, ... NUC, such that

lI I aY G,11 > 1: vk
jES jES kEIUC, - Si

then the direction of steepest-ascent in the subspace defined by the subset cluster is
G5 = G,. We therefore use the following update formula:

JES
V, ES X - X - A, G,

where

(6,3) A x i ~4,1A' ='( 1( , X -4,,

CASE 4: If 3TC 1 j3, . NCC, such that

lI7_ G,11, > I I VkA +WHj rT E . T 11k I CC O - r I

then the dire.ction of steepest-ascent in the subspace defined by the subset cluster is (i "
G. We therefore use the following update formula:

V : ,' X,- e;7
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where

(6.4) [ ik + Wi,(6.4)CC Ir- IXj - "Xk112 + c , I IX , 112

In each result, the expression for lambda (x) can be considered a weighted harmonic
mean [8] of the interfacility distance terms appearing in the equation for the gradient (Case 1)
or pseudo-gradients (Cases 2 through 4).

7. A NEW ALGORITHM

Using the results derived in the preceeding section the following algorithm can be used to
solve Problem P2:

(1) Find a current solution X in E2,.

(2) Try to obtain a better solution by moving single new facilities by using Cases I and 2

(3) For a = 1 ... NUC try to obtain a better solution by applying the special form of
Case 3 where ISI = I (to move single new facilities) or, if this fails, applying the
special form of Case 3 where IS I= I UC,. l (to move entire clusters of new facilities).
If successful, return to Step 2.

(4) For 6 = I . NCC try to obtain a better solution by applying the special form of
Case 4 where I TI - I (to move single new facilities) or, if this fail., applying the
special form of Case 4 where 1 TI = IC('I (to move entire clusters of new facililtes)
If successful, return to Step 2.

(5) Try to obtain a better solution by moving subset clusters using Cases 3 and -1 It an
improvement is made, return to Step 2.

8. REMARKS ON IMPLEMENTATION

The following rules were used in implementing the algorithm described in the a1s"; ccl! n

(a) New facility j and new facility k were considered "clustered" it:

8.,a) IIX,,112 + IlXkII 2 < E I < j < k ,

or
2 • IlXj - XkIl2

(8.lo. jIIX 1 2 + IIx&11 2 <e < k <

where eI A inputted cluster tolerance,

(b) New facility j and existing facility i were considered "coinciding" if

(8.2a) IIXj1 2 - IIA, 112 < E j = I n = m.

or

(8.2b) 2 IIX, - A,11 2 
<  j- I - 1

14x,112J+ IA,112
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where e1 A inputted cluster tolerance,

(c) The update formulas were used only if:

(8.3) AuGi112 > 'E2

where f2 A inputted step tolerance. This helped avoid the possibility of repeatedly taking small
steps. However, the step tolerance is reduced prior to the termination of the algorithm as out-
lined by the next rule,

(d) In order to ensure optimality, the following check is made prior to executing Step 5 of the
algorithm:

(8.4) - f(X 1h')I 100 E3 .(X,1' - i)

where E3 A inputted function tolerance.

If this condition is not satisfied, the step tolerance (e,) is reduced and the algorithm res-
tarted at Step 2.

9. DISCUSSION

The new algorithm has the following properties:

(a) It makes full use of the structure of the facility location problem thus avoiding the
need for any background in related nonlinear programming areas.

b) The actual objective function, and not an approximation to it, is minimized at each
step in the algorithm.

Ic) The stepsize used in this algorithm may not be "optimal" when compared with step-
sizes obtained from line-search techniques. However, the use of this stepsize has the
following advantages: a) ease of computation, b) maintenance of location problem
structure, and c) reduced computation time per update.

(d) Although Step 5 in the algorithm is combinatorial in complexity, very little computa-
tional work is necessary. This is a result of the fact that all the information needed
for this step has already been computed and stored in previous steps.

(e) The algorithm is similar to the technique devised by Kuhn for solving the single-
facility location problems with Euclidean distances 171 and the method devised by
Jucl and l ove [61 for the multifacility location problem with rectilinear distances
This makes the algorithm attractive to those with experience with these methods.

(t) Currently, there is no rigorous proof that this algorithm converges. In 1973, Kuhn
(71 completed the proof of convergence for a similar scheme, introduced h%
Weiszfeld 1131 in 1937, for the case of single new facilities. Based on computatonal
experience and on the fact that the algorithm is designed to mininize the objective
function in all new facility subspaces, it is likely that the algorithm always converges

(g) The main disadvantage of the algorithm is that the order in which each of the sub-
spaces is checked is, currently, not optimal. A method, based on projections, that
would allow us to determine "a priori" which subspace to update, is now being inves-
tigated.



hi Mot existing methods for solung the multlatcilil prohlem Lick i-1
the ex.stetncQ of constraints on the siiluttiin Space I) I hIi, 1,t i1 i IL ' I KI" \
method outlined in this paper, hoecr. the addition i cun1tt, tn'ytuhd iii
present a problem to the projection techniquc

i) It has Net to be proven that the necessari. conditions 1wt optimaht I : Probblem P
gien bs E-quations (5.1) through (..4) arc ar lo sufficient

10. ('OMP'TATIONAL EXPERIENCE

The performance of the algorithm described in this paper (, -\ I a ,,,cd a ai,

the hyperboloid approximation procedure (flAP) described in F.ysier. V tLot, idi \crsillc :21
and a modified hvperboloid approximation procedure IMlIAl') suggested h\ (kitresh iII

Two parameters were used as a basis of comparison: ) the number (d nck tactlilm i()Lr,
tion updates needed to reach optimality, and 2) the required ('Pt time in minuic, In the caC
of program MFLPVI, two counts were considered necessary for speciling thc first piranct
The first count represented the number of "attempted" updates (excluding tlhos updatcs Irom
Step 5 of the algorithm). The second count represented the number of "Su.clu" updaCt,

[he reason for excluding the number of attempted updates from Step 5 of the jlgiirithni i,, sitm

ply this: computationally, very little work is done at this step in the procedure

Six problems were used for the comparison the first three were taken from 151 (# 23.
#5.7 and #5.6 respectively), the fourth appears in 121 and the last two problem, summar ied In
Tables I and 2, are the authors.

HAP and MIIAP were both executed using two different initial hyperhohc constants,
for these problems in order to emphasize the significance of" this parameter tii the pertormanL'C
of these algorithms. The stopping criteria used in each case was the same a,, that outlined in
the paper introducing HAP [21. Unless otherwise specified, program MI.1V I als, made use f
the following data.

(1) e I A cluster tolerance = 0.01 (from Equations (8.1) and (8.2))

(2) E 2 A step tolerance 0 05 (from Equation (8.3))

(3) e3 A function tolerance = 0.01 (from Equation (8.4)).

The results of these tests are summarized in Table 3. The numbers in this table represent
the total new facility updates required to reach optimality. The numbers in brackcts I). under
the column headed MFLPVI, represent the number of successful updates whereas the unbrack-
eted numbers in these columns represent the number of attempted updates The following
observations and comments can be made about the results summarized in this table.

(a) In all but Problem 5, the number of attempted updates required to reach optimaht.
using MFLPVI is less than the number of updates required hy HAP and MIIAP
These numbers are directly comparable.

(b) The new procedure (MFLPVI) used considerably less CPII time in s,,l\ing the six
problems than did HAP and MIIAP.
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TABLE I - Input Parameiers lor Problem 5

1 0.0 04)
2 0,0 0.0

3 6.0 10.0
i a,i a, 4 1.0 3,0

1 0.0 0.0 5 6.0 10.0
2 2.0 4.0 6 8.0 8.0
3 6.0 2.0 7 2.0 4 0
4 6.0 10.0 8 2.0 4.0
5 8.0 8.0 9 6.0 10.0

(a) EF Locations (b) Initial NF Locations

1 2 3 4 5 345 6 7 8 9

1 1.0 1.0 1.0 1.0 1.0 1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1A)
2 11.0 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 1.0 I 0 1.0
3 1.0 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0 1.0 4 1.0 1,0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0 1.0 5 1 0( 1.0 1.0 1.0
6 1.0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0 1.0 7 1.0 1.0
8 1.0 1.0 1.0 1.0 1.0 8S 1.0
9 1.0 1.0 1.0 1.0 1.0 9

(c) w, Weights (d) v,A Weights

TABLE 2 - Input Parameter.s f!r Prohlem 6

1 a,1 a,2

1 2.0 5.0 .
2 10.0 20.0 1 50 15(1
3 10.0 10.0 2 i5.0 15(

(a) EF Locations (b) Initial NF L.ocations

I 2 3 1 2

I 0.16 0.56 0.16 I 1.5
2 0.16 0.56 0.16 2

(c) w,, Weights (d) vk Weights
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TABLE 3 - Comparative Test Results Jbr Six Problems

-(0) io (0) 10-4
# MFLPVI f° .(X°)

HAP MHAP HAP MitAP

(1.0,0.0)
(1.0,0.0)

1 564 (77) 1661 1381 2027 1407 (1.0,0.0) 38.990
(2.0,0.0)
(2.0,0.0)

2 148 (34) 647 546 4641 2281 (10.0,20.0) 186.798
(10.0,20.0)

3 63 (16) 87 70 770 197 (8.0,7.0) 43.351
(8.0,7.0)

4 31 (15) 45 45 45 45 (2.832,2.692 67.250(5.096,6.351)

(4.045,4.281)
(4.045,4.281)
(4.045,4.281)

(4.045,4.281)
5 223 (40) 142 114 1763 975 (4.045,4.281) 201.878

(4.045,4.281)
(4.045,4.281)
(4.045,4.281)
(4.045,4.281)

6 63 (7) 242 164 3743 1869 (10.0,20.0) 8.540

(10.0,20.0)

TOTAL 1092 (189) 2824 2320 12989 6774

CPU 0.07 0.45 0.50 1.88 1.48

(c) Five of the six problems have solutions at cluster points. This appears to be the case
in many other problems. This suggests that methods using clustering information,
such as MFLPVI, will perform better than methods that disregard this information.

10. CONCLUDING REMARKS

To date, many of the methods designed for solving the multifacility location problem have
been either poorly structured, suboptimal or haphazard. In this paper, a new method is
developed for solving the multifacility location problem involving Euclidean distances. This
new method can easily be extended to accommodate problems involving item movements that
are other than Euclidean. Computational experience shows that this method outperforms tech-
niques currently in use. In addition, the proposed method takes full advantage of the structure
of the location problem.

Most current techniques used for solving location problems, including those proposed in

this paper, are designed to minimize an unconstrained objective function. This is an incom
plete treatment since most practical problems involve some form of spatial constraints It is
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proposed that these constraints be handled and the performance of the algorithm improved
through the use of projection techniques. This approach is currently being investigated by the
authors.
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A BSIR ACT

The fixed charge problem is a mixed integer mathematical programming
problem which has proved difficult to solve in the past. In this paper we look

at a special case of that problem and show that this case can be solved b) for-
mulating it as a set covering problem. We then use a branch-and-bound in-
teger programming code to solve test fixed charge problems using the set-
covering formulation. Even without a special purpscs: set-cOvering algorithm.

the results from this solution procedure are dramatically better than those ob-
tained using other solution procedures.

I. INTRODUCTION

The linear fixed charge problem may be formulated as:

() Min I CA + 1.1iy,
Ik J 1 !J

(2) Subject to I a,,.j > b, i E I,
I(J

I if > o

= otherwise / J

(41 andx, > 0, E J.

for 1 =I.... m) and = I .. n.

In addition to ctntinuous costs, the variables have fixed costs ,hich are incurred when
the corresponding continuous ,ariable becomes pt)stlive All cost are assumed to bc nonnega-
tive Problem (I.) is very similar to the standard linear programming problem. diflering only in
the presence of the lixed costs In spite of this similarit.y, it has proven to he an extremcl
dillcu:i problem to solve.

If all the contmuous costs are tero. we have a special case of the fixed charge problem
whtch we will refer to as problem (PI-) Problems o( this type can occur, for example, when-
ever there is it need to find solutions with the least number of basic, nondegenerate variables

621
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In a network context, Kuhn and Baumol [4] discuss the need to know the least number of arcs
necessary to carry a desired flow. Also, in the survey processing field, it often becomes neces-
sary to check a record of replies to a questionnaire and to determine changes to make the
record consistent. In this case, it is necessary to know the minimum number of such changes
that are necessary for consistency. Both of these problems are examples of problem (PF) with
the former having the standard transportation constraint matrix and the latter having a general
constraint matrix which depends upon the consistency conditions.

A special case of problem (PF) occurs when all the constraint coefficients are nonnega-
tive, i.e., aj > 0 for all i, j. We will refer to this problem as (PF+) since we retain the condi-
tion that all continuous costs are equal to zero. In this paper, we will demonstrate a solution
procedure for (PF+) based on a revised formulation for the problem. We then use a branch-
and-bound integer programming code to solve the revised formulation. The results from this
approach will be compared to those obtained using other procedures.

2. A REVISED FORMULATION

The problem in which we are interested may be formulated as follows:

(5) Min I myj
jEJ

(PF+)

subject to (2) - (4)

(6) where a > O0fori EI,j E J

(PF+) remains a special case of the fixed charge problem (F) so any results that are applicable
to problem (F) will also be applicable to (PF+).

Two previously derived results for (F) that are of particular interest to (PF+) are:

1) any optimal solution to (PF+) will occur at a vertex of the continuous constraint
set (2) and (4) (Hirsh and Dantzig [3]);

2) a lower bound, L0, on the sum of the fixed costs can be found by solving the
set-covering problem, Pr, below (McKeown [5]).

Min L0 - T. fJY'
JEJ

(PS)

(7) Subject to Y8 y >, 1, i El
JEJ

(8) yj E (0, 1), j E J

( I if ay > 0
(9) where -8u 0 otherwise,
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We will combine these two results to develop at solution procedure. the (11rk ofhich Is
summarized in Theorem I below.

THEOREM 1: Let 86* = 1/= I in an op~timatl solution to I'j . t hen thece e\t',ts a 1eiisi-
ble solution to Pf:+ ) such that v, > 0) for J E Bh*. Furthermore. this solution vs ill he optiald
for (PF+).

PROOF: Given an optimal solution to P8, we must show that there exist., at correspoind-
ing solution to I PF+ ). The first thing to note is that each columin of' thle constraint miatri\ (7)
of' Ph in Bh* has at least one nonzero element that is the onl] noniero element in that ro\k
Otherwise, the set would be over-covered and we could reduce thle objectike %iILue of P, h\
removing that column fromt the optimal solution. We miay use this result together xith the
nonnegativity of' the a, elements to construct at solution to (PlU +) olsine /J

Assume, without loss of' generalitm, that IB)! A aind that the decision .ti ariales hia\e
been reindexed such that I . A I B*. i.e., the first A variahles oh1 11 P+ i correspond t
the optimal basic variables of' P, We can now construct at least ble sol ottio 0 (PI +* tusing lie
f'ollowing two rules:

1)I Max Ih,/ajt

1, 1  e 0

El

Max UAi
and 2) -vk Max 0. a, ;d A I

This proves the existence of' at solution tc, IPF+ ) correspttnding tt,'B,' I lie '1plima~tm otf
this solution is guaratnteed by the f'act that hoth I 11,) and WIP + I la~e thle sttil te Ihjcent:teao

and that this objective value for P, is a lower htu id oti 01[ + le nc. B' k , cs hids t( tol
optinmal solution to P,.

3. C'OMPU;TATION AL COMPARISONS

Since the optinmal set of ' variables form (Pl + ) can he ftn 1)mlh s Itoent ilhe set -kt,\cit tti
problem, P_. we should he able to use this result to recith qJUICker sOtilitIns t I + v
used at mixed integer programniing code based o tile atiproach (i I bntltri 171 aIs e Cted h\
.Armstrong and Sinha IlI to solve the set-covering prtthhenim SpCCial-p)Urpi se ael~' et go-
rithms can he expected tot perlorni even better. I txed charge test prt lenti~s t r-st icnretated h\
Cooper and Di)rebes (21 were used ats at basis of' c )nlparison het % ceotIsst-tne ttg1 apprJ(i ch
and two other procedures. 1 he first such prttCe~d~re is at hratiin~ d - id elkh de tie ci ped h\
McKeown 1b) specifically for fixed charge prtblems hide the see'1h ttd 1111 11iC lie 1e c tt salle
mixed integer code as bef'ore. but SOl\ ed (PI + ) ats at nosed 11tVege IM)Mient

The original test problems, were of ditie nsion I0I. btttl 1teii~ci phl iis eeeetti
bN putting these smaller liroblenis ol (the djaigoilal I sing titsc pr(lurii- 0i, esolts o, ()ro
comparisons atre shown in Table I belo)\N.
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TABLE I

Average Solution Time per Problem in
('P1J Seconds on CI)C 70/74

Problem Size Number Armstrong Set LI?
Set (n X ) of and McKeown Covering Solutions

Problems Sinha

1 5 x 10 12 0.132 0.049 0.017 10
2 10 x 20 6 0.856 0.345 0.046 4
3 15 x 30 4 3.039 1.357 0.101 2

From the table we can see that the set covering formulation is almost three times faster

than the best alternative approach for the small (5 x 10) problems and up to 13 times faster for
the larger problems (15 x 30). We have also noted the number of problems for which the
linear programming solution was integer feasible for the set covering problems. This occurred
in over half of the cases.

4. CONCLUSIONS

In this paper. we have shown that a lixcd charge problem with nonnegative constraint
matrix coefficients and all continuous costs equal to zero can be solved by solving a related set-
covering problem. Computational experience conlirms that this procedure yields dramatically
better solution times than an. other available solution procedure. Even quicker solution times
can be expected to result if special purtpose set-covering codes are used.
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ABSTR ACT

The bounded inter~al gencrali/ed assignnment model is a "nm~nx -1w -inc, 't
stgnment model. Each task must he assigned to csatlv onc aent. hi 'i ei.
each agent can he assigned multiple tasks as long t~, The agcnl I C,0L11c 011-
sumed bN perForming the assigned task., kills~ thin a SJpcc1iiCd I 11 tc
bounded interval gencrali/ed assignment model is lortulaicd. ind in tieg-
it hm lor its solution is develotped. AlIgorithIims tooi thc hou nded in icr s i %ei

stons of' the semiassignment model and so urce., to- uses, transportiton ni(dcl
are also discussed.

I. INTRODUCTION

In general terms, assignment models represent problems in which indivisible tasks are tco
be paired with agents. Given a measure of utility (or disulilily) associated with each possible
pairing, the objective of the model is to optimize the collective utility associated with assigning
a set of tasks to a set of agents. In practical applications, the number of' tasks typically exceeds
the number of agents, and at least one agent must be assigned two or tmore tasks if' all tasks arc
to be completed. Examples of such "many-tasks-for-one-agent" problems include (the assign-
mentt of engagements to a firm's personnel 1201, points of' distribution to facilities 1151. geo-
graphic units to district centers [211, products to plants Ill, inventory itemis toi %%aiehouses 18i,
harvestable forest compartments to a labor force [121. ships to shipyards Ill1, scholarships to
students 1181, storage compartments to commodities [191, jobs to omnputers [31. files lto tna"N
storage devices [2,13], defect checkpoints to inspectors 1171. and trips to shtps 171. The leatst-
bility of many-for-one assignments will depend on the agents' abilities to comnplete the collec-
tions of' tasks assigned to them. That is. the subsets (of' tasks that catt be assigtned to eacht atgent
are determined by the total amount of' effort available lto thle agent id the dno It (it eflit
that each ir'dividual task requires.

625
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Several many-for-one assignment models have been developed which take into account
only upper limits on the total amount of effort that each agent may expand. Each of these
models is a special case of a model developed by Balachandran (31 and Ross and Soland (141
called the generalized assignment model. This model has the form:

(1) (P) minimize I I c',
it I iJ

(2) subject to I X0 = I for all j E J,

(3) 'r.; b, for all i E/,
t'J

(4) ., = Oor I for all i E,JEJ.

where I 1,2 ..... m) is an agent index set, J = (1,2 ..... i} is a task index set, c,
represents the disutility associated with an agent i, task J assignment, r, > 0 denotes the
resource burden incurred by agent i in completing task J. and b, is the resource available to
agent i. The decision variable x,, is interpreted as

I if agent i performs task ,j
= 0 otherwise

Constraints (2) and (4) insure that each task is uniquely assigned to a single agent, and con-
straints (3) insure that each agent expends no more than b, resource units in accomplishing
assigned tasks. Differences in the difficulty of tasks and differences in agents' abilities to per-
form the tasks are reflected in the values of the parameter r,.

The special cases of (P) place various restrictions on the lorm of the agent resource con-
straint (3). Francis and White 191 and Barr, Glover and Klingman (51 have addressed the prob-
lem in which constraints (3) have the form:

(3a) v,, < b, foralli El.

itere b, denotes the number of jobs agent i can complete, for all jobs consume only one unit of
an agent's resource when the agent performs the task (i.e., r,, = I for all i E /. I E J ). The
model (1,2,3a,4) is a generalization of the standard assignment problem of linear progromming
in that it permits an agent to undertake more than one task. It has been called the generalized
assignment problem by Francis and White and the semi-assignment problem by Barr. (ilover,
and Klingman.

Caswell 161, DeMaio and Roveda 181, and Srinivasan and Thompson 1161 studied the
problem in which (3) is replaced by:

(3b) I r x, < b, for all i E .
"~ J

The model (I ,23b,4) explicitly considers differences in the difficulty of tasks incorporated in
the parameter r,. Srinivasan and Thompson called this model the sources-to-uses problem to
reflect the interpretation of the model as a transportation problem in which the demand at the
i-th location, r,, is to be supplied by a single source.

Practical considerations frequently require that the agents expend a minimum total
amount of effort in completing assigned tasks. Placing both minimum and maximum restric-
tions on the resources each agent can expend, yield assignments which neither overhurden nor
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underutilize the agents. Such restrictions arise in most personnel planning applications 1201.
Managerial policies usually require an equitable distribution of work across agents. Analagous
restrictions crop up in other contexts as well. For example, in machine loading models, it usu-
ally is desirable to balance machine workloads rather than allowing some heavily loaded and
some lightly loaded machines. In facility location models, capacity constraints may restrict both
the minimum and maximum size of a facility to avoid diseconomies of scale associated with
plant sizes outside of a reasonable range, to permit piecewise linear approximation of concave
cost functions, or to restrict both the minimum and maximum number of facilities 1151. Simi-
larly, territory design procedures for problems of political districting, school districting, and
sales districting require an equitable distribution of some entity (such as voters, minority stu-
dents, or sales potential) among the districts. Finally, in some applications, upper limits on the
effort an agent can expend may be irrelevant, and only lower limits need be considered. Such a
situation arises in the segregated storage problem [19] which requires only that a minimal
amount of storage space be allocated to store commodities and no maximum allocation is
specified.

Thus, from the standpoint of modeling flexibility, it is desirable that assignment models
consider explicitly upper and/or lower bounds on the efforts agents must expend in completing
assigned tasks. While most "many-for-one" assignment models consider upper bounds. lower
bounds have largely been overlooked. In this paper, we introduce the bounded interval gen-
eralized assignment model and discuss how existing algorithms can be modified to accommo-
date lower bounds on agent workloads for this model and its special cases.

2. THE BOUNDED INTERVAL GENERALIZED ASSIGNMENT MODEl. AND

ALGORITHMIC CONSIDERATIONS

The bounded interval generalized assignment model may be lormulated as l'ollows:

(5) (P*) minimize z = c,,

iEI 1JEJ

(6) subject to I,, = I for all .i E J.
iEl

(7) a, < r,,,, < b, for all E I.

(8) x/= 0 or I for all i E 1. J, J.

Notice that (P*) derives from (P). Fortunately, the modeling flexibility achieved through
the introduction of lower bounds a, > 0 in constraints (3), (3a), or (3b) does not complicate
significantly the computational effort required to solve any of the models described above.
Rather, as we shall show, straightforward modifications can be made to the existing algorithms
for the semi-assignment problem, sources-to-uses transportation problem, and the generaliied
assignment problem. The interested reader should consult the cited references for the details
of the original algorithms.

In the case of the semi-assignment problem, the constraint matrix is totally unimodular.
and integer solutions can be obtained using the simplex method. To impose the lower limit.

(7a) ,, > a, for all i E I.
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one need only add an upper bounded slack variable si < bi - a, to each of the constraints (3a)
and rewrite them as equality constraints. Optimal solutions to the resultant bounded variable
linear program will be integer valued.

Models with constraints (3) or (3b) are not totally unimodular. Hence, the solutions of
the linear programming relaxation (i.e., xij > 0 for all ij) need not be integer. Branch and
bound approaches have been developed for deriving integer optimal solutions which solve
linear programming relaxations ftr fathoming and to compute lower bounds. In the case of
(3b), a linear programming relaxation is the standard transportation problem 1161; and in the
case of (3), a linear programming relaxation is the generalized transportation problem [31. As
in the case of the semi-assignment problem, to impose constraints (7) or
(7b) a., < T, rx, < b, f or alIlIi E I

jEJ

in a linear programming relaxation, one need only add upper bounded slack variables
si 4 b, - a, to constraints (3) or (3b) and rewrite them as equality constraints.

The algorithm developed by Ross and Soland 1141 for the generalized assignment problem
does not solve a linear programming relaxation to determine the lower bounds. Instead, a
Lagrangian relaxation is solved in the form of a series of separable binary knapsack problems.
The Lagrangian relaxation has the form:

(8) (PA) minimize Z, - Icixij + 0(l- xij )
iEljEJ jEJ iEI

subject to r x < b, for all J E I
JEJ

x,j -0 or 1 for all i E , j E J.

The value of each Xj is set equal to c2, the second smallest value of cij for all i E 1. These X,
are optimal dual multipliers for the problem:

(PL) minimize I I c"XJ
a¢ljEJ

subject to ,xj- I for allj E J,
iE I

04 xij < I for alliE, j E J.

Thus, determining a lower bound requires two steps. First, solve (PL), then solve (Ph). If the
primal solution X - (i,) to (PL) should also satisfy (8), then Z - ZL - ZA, and (PA) need
not be solved. Frequently, X will not satisfy (8), and (Ph) must be solved to find Zh.

To incorporate the lower bounds a, into the algorithm, one need only replace constraints
(8) by constraints (7) giving rise to the problem (P,) with knapsack constraints bounded both
from below and from above. Seemingly, this minor modification to the form of (Ph) should
have little effect on the algorithm. However, it must be noted that (PA) will involve fewer 0-I
variables and may be easier to solve than (P,). The reason is best explained by considering an
equivalent form of the objective function of (Ph):

Z, Y- x - maximum 1 1()- cd x'.
JEJ il~
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Clearly, with consirawnlt (8), one can se1 an) .\,, equal io iero which has an Obieciive function
coefficient (X, - c.,I _0 tlhus. using the %alues of X, calculated from solving (] ), (P,)
reduces to a problem in' olvig ai most n () - I \ariables. Such a reduction is not possible for
(P*).

In addition to providing a lower bound, the solutions to (PI) and (Ph*) may be used to
select a branching (or separation) variable for defining subsequent candidate problems. As
noted above, the solution to (PI), N, is usually not feasible to (7). In essence, the solution to
(P ), A = (i,), may be interpreted as recommending changes in X which must be made in
order to satisfy (7). That is, it is possible that for some j E J, , = 0 to avoid overloading

any agent or Y x,, > I to insure every agent uses a minimum amount of his resource. Those
SIt/

variables .,, with an optimal value of one indicate agent-task pairings that should be made,
whereas, those x,, with an optimal value of zero indicate pairings that should be avoided. Thus,
these variable values indicate changes that will reduce the aggregate infeasibility of A' in (7),
and they are helpful in choosing a branching variable.

To formalize the concept of reducing aggregate infeasibilit., we define the infeasibility in
constraint i prior to taking a branch to be

1), = max 10. ,'. d, I

where d,' = rA', -b,.

(I, CI [ - t ,,.X,,.

ItJ

The set V -i ( lid,' > 01 identities those constraints (7) for which . exceeds the upper
bound. and I - i E lid, > 01 identifies those constraints (7) for which A fails to salisfv ihe
lower bound.

Suppose /+ 0 0 and A E.! E JE , = I and i E / 1, if _x,, is set to() 0 th'n d,' and d,
become:

i = r,,b,, - -r,
I, J

, - + u u 4 r,A

and the resulting infeasibility in constraint i becomes
!, = max 10, d,'. d, ).

,ssuming that task k is reassigned to the second least costl agc1nt. (sa. agent h, vkherc
min = in 4 ) then the infeasibility in constraint h becomes

D,= max 10. d,. (l, I
% here

,I,; = r,, x,, - >,,+ r,,A

-a "..
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Hence, the net difference in total infeasibility is:

AD k = (D, + D,,) - (DA + D,)

If ADA > 0 then setting xA = 0 yields a reduction in aggregate infeasibility, and if ADA < 0
then such a branch will not reduce aggregate infeasibility.

Similarly, suppose that V ;e 0 and k E {j E JliJ = 0 and i E V); if xA were set to !
then di+ and d,- become:

d,+ 7_ r, xi,- b, + rA

d,- = a, - r,,x -"

.,EJ

and the resulting infeasibility in constraint i would be

D,k = max 10, d,+ , d,-1.

If x, A is set to I then task k is assigned to agent i and agent iA relinquishes it, where
iA = min cA.. Hence, the infeasibility for constraint iA becomes

D= max (0. d, d,7}

where

d, 5c, E -b,, - A

,EJ

d,,= a,, - I r,,, X,, + r,,A.
1(I

The net difference in infeasibility is

AD,' = (D, + DA)- (D, + D k )

where D, and D,, are the infeasibilities in constraints i and ik prior to any branch. As before, if

AD, > 0 then there is reduced infeasibility following a branch on variable xA.

Several rules for selecting the branching variable, x,.,., are formulated as follows:

I. a) .,.*. is that variable for which

= max (AD/)

where W! (0- { )I,,=0and E /*}

If - {(i .i).Z,, = I andi E I-

h) If AD/= 0 in a) then .,.,. is that variable for which

AD/" = max 1AD/
1t 0 ,

'  
10 , //')1 16 I

where Gi - {(i. ,'.K, = I and i ( /1

( 0 (. i),, = 0 and i ( I }.
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11. a) x,.,. is that variable for whichI min minI
p, min

(i,j) G Dj (i.j) E G-

b) If AD/ = 0 for all (i. J) E G' UG then.v,.,. is that variable for which

max A,- r,,),
P 0I, J) E E' r(b, YrfI

where E' =(i.1).=,, = land i E 11,

f, denotes the set of tasks assigned to agent i by prior branching.

Rules ]a and lb are designed to choose that variable which reduces the post branch aggregate
infeasibility by the greatest amount. Rule Ila conditions the choice of branching variable on the
additional cost incurred per unit reduction in infeasibility. Rule lib is the one used in 1141. the
variable chosen by this rule represents an agent-task pairing which should he made considering
the penalty for not doing so weighted by the fraction of the agent's remaining free resources
consumed by the assignment.

As the algorithm progresses and new candidate problems (CPs) are defined by the branch-
ing process, the additional steps given below may be taken to facilitate fathoming. These steps
are specialized adaptations of more general forcing (or variable fixing) tests suggested by Balas
[4] and Glover 1101.

In solving any ('P), any .,, for which r,,,, > h,, ,,r,, maY he set equal to ,ero.

tere F;, denotes those . E J for which v,., has been assigned a value of iero or one b. prior
branching or variable fixing tests. Similarly. if there is an .,., for which a,, -

x,r,, > , r,, - r,, then,, , must he set equal to one in the solution tli ((P) F hcsc

variable forcing tests may subsequently result in other variables being forced to /ero or to one
when all of the resultant implications are considered. Moreover. forcing certain %ariables to
zero or to one in the solution to (CP) may affect the values of some of the A obtained from
solving (P*). This change may, in turn, increase the value of the loAer bound pro\ ided h
(P,).

Another test may be used to check the feasibility of (P*) (or an. candidate subproblem)
Summing the constraints (7) together yields the constraint (9):

(9) 4 a, ~ ,, B.
, I * / 1.l ,

This new constraint, together with constraints (6). implies that for in., feasible s ilu on to (1"
we must have:

r;) , 4 and- r;',< B

'Il



632 Gi F ROSS R %I 501 *\Nf AND) \X /01tTNFRS

where

r; max Ir, I and r;' = min Irj
It / It /I

The values necessary t'or the tests (10) can be updated easily as part of' the branching process in
order to apply this test to each (CP).

The algorithm terminates in the usual way when all candidate problems have been
t'at homed.

3. CONCLUSION

'rhis note has described an efficient branch and bound algorithm Ior the bounded interval
generalized assignment problem. The algorithm serves ats at usef'ul tool f'or solving a large
number of' applications of this assignment model, a representative sample of' which is men-
tioned in the introduction.
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ABSTRACT

In this paper we are concerned with seseral random processes thtl occur in
%I(/GI queues with instantaneous feedback in which the feedback decision pio-
cess is a Bernoulli process. Queue length processes embedded it %lrlous t111c-,
are studied. It is shown that these do not all have the same aslmpiolic disri-
bution, and that in general none of the output, input. or feedback pl-occsscs is
renewal. These results have implications in the applicatiion if certain dccorrlp-

sitilin results to qucueing networks

1. INTRODUCTION

In this paper we are concerned with several random processes that occur within the class
of MIGII queues with instantaneous feedback in which the feedback decision process is a Ber-
noulli process. Such systems in the case G = M are among the simirest, nontrivial examples
of Jackson networks (81. Indeed, tlhey are so simple that they are usually dismissed from con-
sideration in queueing network theory as being obvious. We will show that far from being
obvious, they exhibit some important unexpected properties whose implications raise somc
interesting questions about Jackson networks and their application.

In particular, Jackson (81 observed that in his networks the vector-valued queue lengih
process behaved as if the component processes were independent, M/MI systems. Since those
results appeared there has developed a mythology to explain them. These arguments usually
rest on three sets of results that are well known in random point process theoryi superposition,
thinning, and stretching. By examining the network flow, it will be shown that the applications
of these results are inappropriate for queueing networks with instantaneous, Bernoulli feedhack
These flows are considerably more complicated than one expects based on such arguments.

Ihe research was supported under ()NR (ionracis N iM14.7-(- 4142 iNR042 29iju Ntld I l 4 1- Nk,,R 47 .1t)(o

635
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It is shown that in general, both the input and output processes of the Al/1I/i queue with
feedback are Marko\-renewal, and the kernels of those Markov-renewal processes are given.
The output of the M/Gi queue with feedback is also Markov-renewal, and that kernel is given.
It is shown that in general these processcs are never renewal. The implications of these facts
are discussed in Section 4.

1.1 The Problem and Notation

We assume the usual apparatus of an MIGI queue \kith unlimited waiting capacity. The
ne" idea is thal a uni ihich has received service departs with probability q and returns for
more service with prohabilit\ p. 1 - q = I, Without loss of generality for the processes stu-
died here. the returning customer can he put anywhere in the queue.

To establish notauon it is assumed that the arrival process is a Poisson process with param-
eter x > 0. The arrival epochs are the elements of { 4,: n = 1.2. .. . ). Service times are
independent, identically distributed, nonnegative, random variables, S, with

Pr 1.S, < /1 = I). I > 0.

FIS"I < -o.

We define I/*(%t. the Iaplace-Stielties transform of //(t). by

II (s) f e "dI(Il). Re S > 0.

I he arri\ a process ani service times are independent processes.

Ser\ ice completions occur at 'I ' l< 1 < T, . . called the output epochs. Let

0. if the n -th output departs,

= r 1, if the n -th output feeds back.

I ),,) is a Bernoulli process.

Elements of the subset t,,I c 1 ;,} are called the departure epochs and are the times at
which an output leaves the system. The elements of the subset ,C T, I are called the fi'ed-
back epochs and are the times at which an output returns to the queue. tj IT,, = E ,I.

The times T are the times at which a unit enters the queue. { 7, is called the input pro-
I F.'} = s,)} u 7

-here are live queue length processes to be studied. They are closely related as will be
shown,. Let QM I be the queue length (number in the system) at r. Then,
QI () - QII, - 0);' Q2 0In QIT, - Of, Q (n)= Q(T,+0), Q4 (0= Q(I,, +0) are
respectively the embedded queue lengths at arrival epochs. input epochs, output epochs. depar-
ture epochs.

2. QUEU'E LEN(GTh! PRO('ESSES

The queue lengths listed in Section 1.1 are closely related. The steady state versions of
IQ,'n ) and Q4' In)} are of primary concern. They are studied in Sections 2.1 and 2.2
separately. They are related to the other processes in Section 2.3. The important special case
for G = Al is then studied in 2.4.
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feedback process

i queue Serve

dr1l IVdI l ti t ott
process process ittoceSs

Fltt rl 1

2.1 The IQ+ (n)) Process

There are several ways to study this process. The following appears to he direct. corrcct,
and may help explain why these feedback problems have received such little attention in the
queueing literature. First, it is clear that

t,,n I+ S,;. if'Q , ( n1 -  I) > O.
ifQ4 t - 1)=(O.

Here S, is the total service time consumed between the (n - 1) - si and n-th departure. 1, is
the idle time following t,_1 when Q4+ (n - I) = 0. For the M/G/I queue, the / 's are indepen-
dent, identically distributed, random variables that are exponentially distributed with parameter
A .

Without loss of generality, since customers are indistinguishable,

S, = S) + S, + .. S,

where m is the number of services performed between the (n - 1) - st and n-th departure.
Since 1Y,,} is a Bernoulli process, m is geometrically distributed and it follows that {S,',) is a
sequence of independent, identically distributed, random variables. Thus, the Laplace-Stieltjes
transform of the distribution function of S,, is easily found to be

(;*(s) = qlt(s)/[l - ptt*(s)I.

Using standard embedded Markov chain methods 13, 107-1741 one finds that the probahil-
ity generating function of HI', the limiting probability distribution of Q4" (0 )j is, gi ,Cn h\

ir'(0) (: - I) G (,G - xA)(I) k(z) =

- G°(A - Az)
and

(2) 70(0) = I - xE [S,I/q.
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If one is willing to assume that the M/G/I queue with instantaneous, Bernoulli feedback
has a queue length process which asymptotically has the same distribution as another MIGII
queue without feedback, then (1) and (2) follow immediately. This assumption is valid since if
customers feedback to the front of the queue, the total service time of the n-th customer is S,'.
IS,) is a sequence of independent, identically distributed, random variables with mean E[S,]/q.
Alternatively, one can argue that the A/GI queue with feedback (as defined here) has the
same asymptotic distribution for its queue length process as an MIGI queue without feedback
if one takes the arrival process parameter in the latter case to be x/q. Indeed, both of these
assumptions and several others that are used to "prove" that these queues with feedback are
trivial have now been proven by the arguments leading up to (I) and (2). That these argu-
ments can be applied more generally is easily proven. In the remainder of' this paper, in Takics
[101 and in Disney [61 it is shown that while these arguments may imply that the study of
queue lengths at departure times is trivial, the same cannot be said for other processes of
interest.

2.2 The {Q' (n)[ Process

I his is the queue length process embedded at output points. Since {t,,} c 7,}. Q4 (,J)
is a process on a coarser grid than Ql t* 01. Since one is ultimately to be concerned with both
IQ, ,)} and T,, - T, 1. the following study is for the joint process IQ; (,). 1,- 7, 
The marginal results for IQ ' (n ) then will be easy to determine.

THEOREM I: The process (Ql" (n), T,, - T,, -1 is a Markov-renewal process with kernel
A(ij.x) = Pr(Q.f(n) -j. T, - T, xIQ' (n - )= i f. Ifone defines

p, A ,.j j 0. 1,2.

then

0. ifj < i-1,

f (P, r(. p + P, , i(.v)q) dH(.v), if i 0,

JI I.. = > i -I

( (I - W, A" P (P, v(Yp + lY)q dHty),if i =0,

, > 0.

(I e 1P.v)qd/IIv). ifj = 0.

PRO()I

S,,. if Q1'( - ) > 0,

, I /,,+ S,. if ): - IQ= 0,

where 1, is the exponentially distributed idle time preceeding S, if Q1' (n - 1) = 0. The result
then follows directly using arguments as in [5]. 1,

As x - o, A (,.j~x I (i.J) the one step transition probability for the IQ,' (n) process.
Then using standard embedded Markov chain results [3, 167-1741 one can show that the proba-
bility generating function g(: for the limiting probabilities r (.) of Q1, (it) are given by

(3) glz) = ()z l)(pttL k - A:) + qt*(& -
p:1lt (k - A - qlP(A - A:)
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and
(4) 7r (0) =q E I.S,,]1.

2.3 Other Queue Length Processes

The queue length and limiting probabilities for the queueing processes, (Q (n0],
{Q 2-(n)} now follow from a theorem found in Cooper [3, 155]. From this if follows that
{Q(t)), (Q1 (n)), and (Q4 (n)) are asymptotically, identically distributed (see Cooper [3, 651)
and Qi (n), and (Q3 (n)) are asymptotically, identically distributed. Clearly, [Q4' (n) and
IQ (n)) are not asymptotically, identically distributed. That {Q + (1)} and {Q; (n)[ are not
asymptotically, identically distributed can be seen as follows. First, in the set up of studying the
IQ' (n)) process one must decide how to count the feedback customer when he appears. The
clean way to do this is to use Y,, as defined in Section 1.1 and Q3 (n) as the number in the
queue not including the outputting customer. Then one can study the process I Y, *Q' (n)).
Indeed, this is precisely the direction used, for example, in d'Avignon and Disney [4]. Then
the (Q.1 (n)) of Theorem I above would be the {"Q (n) + Y, process of 14]. It then follows
that I"Q3 (n)) and (Q' (n)' re asymptotically, identically distributed. Thus, if one does not
count the feedback custome .i the queue length process, the queue length processes defined in
Section 1.1 are all asymptoticaly, identically distributed.

2.4 The M/M/1 Case

If one assumes that the service time distribution is

H(0) - I - e- ', t >, 0,

some further clarification is possible here. From the results of Jackson [81,

ir'(j) - . = 0, 1. 2.

From (3) and (4) one obtains

77(0) I )- 1

r(.Q)= -I I ) p+[, .= 12 .

Comments in Section 2.3 explain this difference between rT(j) and 7t'(.j.

3. FLOW PROCESSES

To further clarify the problems here, it is useful to study the flow processes inl this S *s-
tem. There are five processes of interest: the arrival process, the input process, the output pro-
cess, the departure process, and the feedback process.

There have been some questions since the publication of the Jackson results concerning
the interpretation of his results [2]. In his paper Jackson showed that [Or his net orks the ioin!
limiting probability for the vector of queue lengths at each server could he ilactored into linit-
ing probabilities for the queue length at each server. This imples that the queue lengths arc
independent in the limit. Furthermore, the marginal limiting probabilities %%erc foUnd to be
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precisely those of an A// All I queue. Burke 12], has argued that the Jackson results are surpris-
ing. Burke's argument is based on showing that the input to a single server queue with feed-
back is not Poisson because the interinput times (our IT;,, - 7', 1) are not exponentially distri-
buted. [21 gives the precise result

P r ( T ,', - T,, I t} I - 4 t A . . .-' -' I'llO

A -A P. - A

In this section we will study some of' the flows in this network and show indeed that the

Jackson results are surprising.

3.1 Departures

The departure process {tj can be studied as in Disney, Farrell, deMorais 151 upon using
the mapping in Section 2.1. Thus we know that whenever (S,,) is a renewal process with
exponential distribution this departure process is a renewal process, and is a Poisson process.
This is the Jackson case. So we conclude that the departure process from the Jackson network
is a Poisson process.

From the results of Section 2.1 it would seem possible that the departure process is Pois-
son even if S. is not exponentially distributed. The result that is needed for the results of 151
to follow is that S,, be exponentially distributed (since it is known that IS,,) is a sequence of
mutually independent, identically distributed, random variables).

I.-MMA I: The departure process from the AG//1 queue with feedback is a renewal pro-
cess il and only if S,, is exponentially distributed for every n. In that case the departure process
is Poisson.

PROOIF: From Section 2.1 we have * (.,), the [.aplace-Stieltjes transform of the distribu-
tion functions of S,, is given by

(s) = llA(+P+)
I - Pll(s)

From 15], when the queue capacity is infinite the departure process will be a renewal pro-
cess if and only if S, is exponentially distributed with parameter a, and will be Poisson in that
case. But this implies that H*(s) must satisfy

a/(a + s) = qll*(s)/ll - plP(s)].

The only solution here is

!!*(.s) a/q
a/q + s

which implies //(t) is exponential.

3.2 Outputs and Inputs

From Section 2.2 it is clear that the output process is a Markov-renewal process whose
distributions are given by A (i.jx). From these, the following results are obtained.

TtI-,ORtEM 2: The output process I1, - T,, I is a renewal process if and onl. if q =

and!!I()= l-
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PROOF: If q - I and H(t) - I - e 1", the output process and departure process are
identical processes. Furthermore, the processes are both departure processes from a A N/l/I
queue without feedback. From [5] we have that this departure process is a Poisson process and
"if' follows. To prove "only if' we consider the contrapositive statement and assume q ; 1.
(The other side of the contrapositive would have H(t) 16 I - el'. But then "only if' follows
trivially from [5]. Thus, we need only consider the case of q * 1.) Equations (3.1) and (3.2)
in [51 can be modified in such a way that one can show that if q ;d 1, there is no solution to
both of those equations simultaneously. Then using the same arguments as in [51 one has that
IT, - T,,_1 is not a renewal process and therefore "only if' is proven. 17]

To be more specific, Theorem 2 can be particularized as

COROLLARY 1: The output process { T,, - T,, I1 for the A/l/I queue is a Poisson pro-
cess if and only if q = I. One can prove this result (in fact it is obvious) directly from
Theorem 2. The following is an alternate proof that exposes a bit more of the properties of
these systems. Again we use a contrapositive proof for "only it".

PROOF: Define

F(x) Pr{T,, - T,, x.

F(x) = irAU where U is a column vector all of whose elements are 1, 7- is the vector of limit-
ing probabilities given in Section 2.4 for IQ' (n)} and A is the matrix of A (Jix), Then from
Theorem I one obtains after some algebraic manipulations:

(5) F (.V= q- A [I - ' Af, A dlt(.) + + -t(.)

for any MIGI I queue with instantaneous, Bernoulli feedback.

For M(y) = I - e ", it follows that

(6) F(W) = I - -i - X ,, v >t.At--,t -- h

Thus, single intervals are not exponentially distributed and the output process is not a Poisstonr
process if q ;e I. On the other hand if q = 1. then we fulfill the conditions otf Iheoren 2
Ilence. IT,, - T,,- 1 is a renewal process. But from (6) this renewal process ha,, e\ponentill,
distributed intervals and thus is a Poisson process. ! '

Formula (6) was previously found by Burke [21 for the distribution of tirnes between
inputs. The input process can be analyzed as follows:

THEOREM 3: If H(x) = I - e -", the process [Q2 (n), j, - 1, is a Marko,-

renewal process with kernel

Y(i.j,x) = PrIQ 2 (n) =j, T, - , xIQ, (, - I) = i

given by

0, j > i + I.

fj( e - q e A) q 'd tl 
1 ' ' ls ) : .i = 0 . i ) 0 .

Y(ij,X ) - e q e p +I

c '( e ) ,i + I
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where dH"+t)(s) = 1cts)" e-A' (s./I!

PROOF: Clearly, ifj > i + I then Y(ij,x) 0 0. lIfj = 0 then Y(i,J.x) is the probability
that the i + I customers in line all depart before x and the first arrival occurs after the last
departure, but before , or, the first i - I customers depart, but the last one feeds back before
x, and there are no arrivals while this is happening.

If I < j < i then Y(ij,x) is the probability that i - j + I customers depart before x, no
arrivals occur during this time, but between 'he last departure and x, an arrival occurs before a
departure; or, i - J + I customers are serv,,d before x, the first i - J depart, the last one feeds
back, and there are no arrivals while this is happening.

Ifj = i + I then Y(iJ,-x) is the probability that there is an arrival before v and no depar-
tures before x. Since Y(,.j,x) never depends on {Q2 (k); k < it - I} or {TA. k < n), the
process {Q2 (it), T, - T,, I is a Markov-renewal process. r-

Now, if Y(x) is the matrix whose elements are }(i,j,x), Tr is the vector of probabilities
found in (3) and U is a vector all of whose elements are I then it is easy to see that

F(x)= PrIT,- T,- K x]=7r Y(x)U

and

G(x,.v) = Pr[T,, - T,',- x. , +- T y = ir Y(x) Y()U.

where F(x) is the F(x) given by (6). Of course, if (T,, - T,',_- is to be a renewal process then
it is necessary (but not sufficient) that

G(.%-,y) = F.0F( y).

From this we can conclude:

COROLLARY 2: The input process to the MIMI] queue with instantaneous, Bernoulli
feedback is not a renewal process unless q = 1.

PROOF: If q - I then the input process is just the arrival process which is Poisson.

If the input process is a renewal process for q ;e I then it must be true that

Vx: 7r (x)U = F(.)

Vx.; e Y(x) Jy)( U = l (.) F (Y) where

F(x) is given by (6) and Uis a column of I's. Thus,

v.xy; (if F(.\ ) )"

Some algebra yields

(if r Y,0j I' Y U = F(.X) -(I- P i)tI~A A - JE.(.P +

I- A. -AIf'q eI 1,

A A,~-ig~±~ JAI. -
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Thus, to show that the input process is not renewal, it suffices to show that for some y.,

P C-A v PI e- "pet + Pe A). ;± 0.
t- Xk I1 - ,X

The third term of the Taylor expansion of this expression is
,pLX2 pAk2+ p L+ k) = o

,0,
1 s-X 2 X-X 2 2 2

so (by [I, 198] for instance), it cannot be identically zero unless p = 0 (i.e., q = 1).

It seems obvious that the arrival process and feedback process are not independent
processes. One can show, using the above arguments:

COROLLARY 3:" Either the feedback process is not a Poisson process or the arrival pro-
cess and feedback process are not independent processes (or both) for the AIM/ queue with
instantaneous, Bernoulli feedback.

PROOF: This result follows immediately from Burke's result 121 on the distribution of
the interinput arrivals. For if the feedback process is both independent of the arri~al process
and is itself a Poisson process, the input process is Poisson. Thus, Burke's result contradicts
the assumption. L-

3.3 Feedback

The feedback stream seems to be quite difficult to work with. From the previous section
we know that it is either not independent of the arrival stream or not a Poisson stream
Melamed (91 has shown that this feedback process is not a Poisson process. We conjecture
further that it is not independent of the arrival process. If so, then the known superposition
theorems cannot be used to study feedbacks in terms of the arrival, feedback and input
processes.

Since the feedback stream is the result of applying a filter to the Markov-renewal output
process, it is itself Markov-renewal on the state space 11,2, .. .. Even in the M/M/I case, the
form of the feedback stream does not appear to reduce to that of any simpler process.

4. CONCLUSIONS

There are several conjectures that one can pose concerning networks based on the results
of this paper. First with respect to queue length, busy period, and departure processes, if one
adopts the "outsiders" view 13] these processes appear to be those generated by an MIGII
queue without feedback. However, if one adopts the "insider" view the queue length process
does not appear to behave as seen by the "outsider."

Flow processes in this network cannot be explained by appeal to superposition, stretching,
and thinning results for Poisson processes. The requisite independence assumptions both
within and between streams of events are not satisfied here. Thus, one cannot assume that
these queues which act "as if' they were M/M/I queues to the "outsider" are AM/M/I queues
to the "insider." In particular, this hints at the possibility that in these networks, even as simple
as Jackson networks, any attempt to decompose the network into independent M/M/l queues
is doomed to failure. This decomposition must account for the internal flows and these not
only appear to be non Poisson, they are nonrenewal and are dependent on each other.

"%l.Ic imed l'fl hs s'hoi ri. I nllg 'ht r .argt elt. s. th lilt fthe .tlch.ik Ilrte.i11 i, 11,t .i a i. '
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In [9], it is shown that in the Jackson structure, the flo, along any path thai returns a
customer to a node that he has previously visited is not only not Poisson, it is not renewal.
Thus, if Jackson networks have loops, (direct feedback as in this paper being the simplest
example), they cannot be decomposed into sub-networks of simple MIM/I queues. In particu-
lar, these results imply that a node-by-node analysis of waiting times depending as they do on
the "insiders" view is not valid if one simply uses M/M/ results at each server. Takdics [101
studies the waiting time problems in the system discussed in this paper. Disney [6] presents
another view of the same problem.
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ABSTRACT

I his paper presents a single-item inxenior) model with deterministic
demand where the bu ' er is allowed to search for the most las orable price he-
l'ore deciding on the order quantity. In the beginning of each perliod. a secluen-
tial random sample can be taken If.rom a known distribution and there isatfixed
cost per search. Fhe decision maker is faiced " ith the task of* deciding 'Ahen to
initate and w~hen to stop the search process, is Aell as determining the optimal
iorder Lluantiih once the search process is terminated I he obtectis e is to

minimiie total expected costs while saist'\ing all demand', on time We
demonstrate that at set of critical numbers determ inc the optimal stoppinog and
oirdering strategies. We present recurstse expressions ielding the criticl,1
numbers, as well as the minimal expected cost from the beginning of eser\
period to the end of the hori/on

1. INTRODUCTION

This research is an attempt to marry some aspects of' search theory and optimal stopptng
with inventory theory. Following the pioneering work of' Stigler (if 1 121, searching (or the
lowest price ts constdered at basic Feature ot' econlomic markets. By citing examples based on
real data. Stigler I I II asserted that prices change with varying 1requency in all markets, and
unless a market is completely centralized, the buyer will not know f'or certain the prices that fihe
various sellers quote at any given time. This suggests that at any- timne there will be at f1requency
distribution of the prices quoted by sellers. If' the dispersion ot' price quotations by sellers is
large compared to the cost of' search, it will pay -on average -to obtain price quotations from
several sellers bef'ore taking an "action." The \amt literature on search theory (at surve ' of'
which can be IbOund in Lippman and McCall 181. De~iroot 151. and Rothschild 111)1 is con-
cerned with rules that the searchers should Ibollitw when the "action" is accepting oir rejecting at
price. Once the price has been accepted, the decision process terminates. In many, d ,ynamic
models, the action is more cotmplicated In ins enorN model-,. for example, thle decisioin not
only involses, accepting tir retecting an ordering price hut htiA much to order, an action which
will ailect the search atnd ordering policies in fuLture periods In this paper \ke stud\ such at
motdel, We seek the best search and ordering policies Ii r a sitmple d\ nanlic ins entt)r ' protblemi
with deternmistic demands where, in the begining ofl etch period thle purchaser can search
For the lotwest price belt ire placini, an irdet

* thi rvsea.mh ws.j,lJ sni~kpl-1011 h, Th, Noti-.id "-n, I wni.wi lh-o..ig liftn NNiI 1i %'4 1;4114 ,ind thc

I ie Itt~cc I 5 eniti Hs~oI, \11I sk ' ' tei)(

t4,
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Classical optimal search considers the following problem: A purchaser can take at sequen-
tial random sampljle .,A ... from at continluous distribution \&ill a kno~ i distribution f unc-
tion 1. There is a fixed cost s per observation. Suppose that if' the decision maker stops the
sampling (search) process after the values X'1  .AN % X,= .~.X, = .\. hat\e been observ ed.
his cost is v, + sn. H ence, the problem is to find at stopping rule which minimizes Pt , (\ + sN)
where N indicates the random number ot observations that are taker under it specif ied stopping
rule. It can be shown that, whether sampling is with or without recall, the optimal stopping
rule is characterized by a unique critical number v* (usuall\- called the rescr~ ation price) so that
ain optimal sampling rule is to continue sampling whenever an obser\ ed value exceeds \* and to
stop thle process as soon ats Somne observed \alue does not exceed * \'ilit LIS versions of' this
problem have been studied by MacQueen and Miller 191. IDerin and Sacks 101 and Cho%\ and
Robbins 121, 131 among others.

ile abov~e search model can be iSalMiIed aS al One perilod pur-chasing pri thIem1 In " iCh
one unit of' some commiodit y hits to be purchased at thle beginning o f the period N( 0111ci ider
at dynamic multiperiod version of this problemn where aI demanWd of' onIe unit has I(, be satisfied
in cue/i period and inventor\' holding cost is charged It r items held over for use In sublsequent
periods. As in the classical search problem, inl thle beginning of' echII per'iod al seqeialC11 ran1-
dom sample X1. A2. . .. can be taken from a distribution A ith kno\\ n distribut tn function L
but the decision process is not terminated as sootn ats an acceptable v alue is obserF Col. [ he deci-
Sion maker is faced with the task of' deciding hlow much to order so asit, ( mi nimti/e todt
expected Colsts %kbile satiSfy' ing all) demands on time. When the inventor\ lesC IN is sutliCini to
satisfy the immediate demand. hie has also thle burden of dcitx li1 M hehei to initiate1 search at

Al. FIIis multiperiod n11OdLC is thle Su~bjeCC Of o11 Stud\ ill : , jli

Inl Section 2. we present thle model. Inl Sect ion 3. \N e i \ thle opt inul seai ch Pt lic\ anld
in Section 4, thle optimal ordering policy'\ We ShO\k thle inltuitivereul thatUI an1 Ml OIt Ili ,IAIeLg
prescribes that search should be Initiated oly when thle inventory ,\ ci is /ln I on birut iir.
we sho\N that the reservation price propert\ of the classical search problem still hiflds I hat is.
when the inv~entory level is /ero (and thecref'ore seairch has (() be initiatedP id et pert Is reniat 0

to the end of' the problem. there exists a reserx ation price k, such 111iM J pTice Shotuid be
accepted if it does not exceed (k,, and reJected othcr4 isc Inl Section 4. N e shw. Os tat mnce ai
price hats been accepted. at finite numnber if' critical number,, speci\ thie i pt inral ,I rateg-l I lie
critical numbers djivide the Interval Ill 0,. I into segmlents Sit that the iniei\ al in s\ hich thle
accepted price falls determines the tiptitnal oirder quaintit\ We gti e recursi\e expresit ins, "hich
yield (v,, ats %ell ats the minimal e xpected cost fo r an\ period tot thle end (t' the hoit/on We o,%ill
also obtain exp~ression-, describing the critical nuorb11ers %%hen the hoiltding Ci is IMC11 1nci itini n -

(tonsider at miuli-peritid single-ieml insenttirl\ mtiodei in Miltch it demnand it tine unit has
ito be Satisfied in thle beginning o)f each peritid and ant ins ntit hiolding cosi1 is chairged In
each periodl. a sequential random sinmple It. o f' i idering prices, can be generated fro nt a
ctontinuotus distributiti Aith knomm~ cutr~iltie distriuItn (LoMircttI M .aid tIle
V, s are ilutuail I independent. I he cost o f generating each randoi nt pice is Nind thereC IS 1it

limit tin the nuilber iof ttbser~at ions s.%hich canl be mlade in each pet id ftler recci t ng a prTice.
thle decisitin maker has1' t1t dideRI %etller tot accept that price: or geneitte anoihe tille It tic
accepts, the otffered price. hie is, faCed sA h tile deckisttil (it fit u ll"c IJII 1 tlitte \ hll tile illS 211
1411 irsC 1es etMIM1 i lcntit SatIl. ilk tillilleilate ienlaild. het:lAi t has I() (Iclce Mirelth I() i1nu1i,11
search .1 aill I he OitbIeCe IS It 1111ll1il111e thle tutu~l exp ted I ii
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We assume that the length N of the planning horizon is finite, initial inventory is zero,
backlogging of demand is not allowed, the cost of holding z units for one period, h (z), is non-
decreasing in z and h (O) = 0, the purchasing cost is linear in the quantity ordered, and only
integer quantities can be ordered. We also assume prices that are not accepted immediately are
lost; in view of our results, sampling with recall (of prices in the same period) extends no addi-
tional advantage over sampling without recall, and hence would not affect the search policy'.
Note that when N = I, this model reduces to the classical search problem.

Let n be the number of periods remaining until the end of the horizon, the inventory on
hand with n periods remaining and x the last price received. In each period, our state space
consists of numbers (z) and pairs (z.x) corresponding respectively to the state of the system
before a search is placed and the state when a search has been placed and an offer x has been
received. A policy for period n prescribes a search decision for state (:), and a reject-accept
and ordering decision for state (z,.x). We assume that for each period an optimal policy exists.
Moreover, we restrict our attention to history-independent policies, that is, once the price v has
been rejected, we are in the same position as having not placed the search at all. Schemalically.
remembering that demand in each period equals one, the period-state pairs correspond to each
other as follows:

For z >, I:

Reject 3

Search (( )Accept x and order an amount a ( -1.:+a- I

and

Reject x

(,n.0) Search O(UO (.Accept x and order an amount a (u-la-I)

3. OPTIMAL SEARCH POLICY

In this sectior, we present the optimal search policy. We show that search should only be
initiated when the inventory level is zero, and prove that in each period a single reservation
price determines the stopping rule. We also give a recursive expression which describes the
sequence of reservation prices.

To being, define

[,, ( .) = the minimal (conditional) expected cost during the last n periods \khen the
inventory level with it periods remaining is _ and the last price oflcred is \

v,, (Z) = the minimal expected cost during the lasi n periods before the decision to
search for an offer is made. and when the inventory lecl %ith i periods
remaining is
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u,,(z) = the minimal expected cost during the last ni periods after the decision to
search for an offer in this period has been made, and when the inventory
level with i periods remaining is :.

w,(z) = the minimal expected cost during the last n periods after the decision not to
search for an offer in this period has been made, and when the inventory
level with n periods remaining is z, z >, I.

H(z) = the total holding cost of z units to be used in : consecutive periods.

Hence, we will have the following relationships:

(i) v,,(z) = min[u,(:), H,,(Z)]

(2) V,,(zx) = mintv,,( min m a.x- + I(: + a - I) + v,, (z + a I)11.

(3) u,,(+) = s + E, ,(:.x)I.

(4) /,,(z)= (z - 1)+ v,, (z- 1). : > I.

and
:-I :-I

(5) H(z) = h( - i) = (i).

Define

(6a) /,,, a I ax + h(a - 1) + v,, (a - D

and

(6b) 1, (x) min I,, (x.a.

and let a,,(-x) be the minimizing value ofa in (6a). that is.

(6c) /,,(x) = 1,, lx,a,, (x).

The quantity I,,(x) is the minimal expected cost attainable during the last n periods when the
inventory level with n periods remaining is zero and it has been decided to accept x. the lasi
price offered.

At this point it is natural to ask whether when nt periods remain, there exists a single criti-
cal price a,, which dictates the acceptance or rejection of a price x when the inventor. level Is

zero. In other words, is there an a,, such that it is optimal to accept the price x (and order a
positive amount) if x < a, and to continue the search if x > a,, That this is indeed the case.
is verified in Theorem I.

Define
(7) a,, 1 ,, K1(O0I.

and the sequence IA,,),> by the following recursion:

(8a) ,4f = 0

and

(8b) .4,, H,,) = s + min lax + 11(a) + A,, .. dI"(0 lor n > I.
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We will show later that a,, exists and that A, equals v, (0), so that a, - I,,(A,). These pro-
perties are exploited to verify that an optimal policy prescribes that search be initiated, and ord-
ers be placed, only when the inventory level is zero. Furthermore, we will show that if the set
of prices at which it is optimal to order one unit is nonempty. a,, - A,, - A,, so that Equation
(8b) can be written as

(9) A,,F(A,, - A,, 1 ) = s + 4 min lax + 1(a) + A,,_jdF(.).f, ( 11.2. .,d

enabling us to obtain the minimal expected cost from the beginning of any period to the end of
the horizon by finding 1A,}' 1, the unique set of solutions to Equation (9).

THEOREM I: If the inventory level with n periods remaining is zero, it is optimal to
continue the search if x, the last price offered, is greater than tt,, and accept the price if
x < a,,, where n = 1,2. N.

PROOF: Clearly. 1,, (x.a) is continuous in x for each n and a, and therefore, 1,,(.) is a
continuous function of x. Furthermore, for all positive numbers E,

/,,(,v + E) = I,,[x + 4E, a,,(x + t) > I,,[.,a,,(x + )] I,,Lx.a,,(x)1 = (.0 .

and hence 1,, (x) is strictly increasing in x. Let a,, () be such that /1 [a ,, (y ) Y y, i.e..
a,, (y ) = I,, y .) . Since

v,,(0) > v,, 1 (0) ain Ih(a - I) + v,, I(a - I)] = (0)
,t {.2, .,1

it follows that a,, = a,, Iv,, (0)1 exists and, as /,, (x) is strictly increasing in x. it is unique (see
Figure ). The first inequality of the above expression follows from the fact that for the n - I
period problem we can always follow the optimal policy for the n period problem, so that at
each stage in. n - I > m > I, we would adopt the action prescribed by the n period optimal
policy for stage in + 1. Thus, the expected cost for the n - I period problem under this pol-
icy, v,- 1 (0), would be equal to the expected cost of the first n - I periods of the n period prob-
lem, and hence v,, 1(0) < v,, (0). Since v,,- (0) < v,'_ (0), it follows that v,, (0) is nondecreas-
ing in n.

In(x) j

vn(O)

n(0) I
IX

I
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From (2) and (6) we have

V, (O.x) =- min [v,(O), 1,(x).

If x K a,,, then In(x) v, (O) so that V, (O,x) = ,(x) and search terminates. If x > a,,,
then ,(x) > v, (0) so that V,(O,x) = v, (0), in which case it is optimal to continue the search.

Q.E.D.

Thus, when the inventory level is zero, a single critical number determines whether a
price should be accepted. We are also interested in finding the optimal strategy when the
inventory level is positive. It seems intuitive that if the immediate demand can be satisfied by
the current inventory, it would be best to postpone the search-since it is possible to incur the
same amount of expected search cost in a later period while saving on the holding cost. The
next result, the proof of which is given in the Appendix, verifies this observation. In addition,
it shows that the expected cost from any period k in which the inventory level is zero to the
end of the horizon equals AK. Thus, the expected cost from any period can be determined by
computing the sequence {An} from Equation (8b).

THEOREM 2. Under the assumptions of the model, for all k, k = 1,2. N,

(a) vA(0) = Ak

(b) vA (z) = H(z) + vA._(0) for I < z < k.

Theorem 2 verifies that search should be initiated only when the inventory level is zero,
and Theorem I gives a rule for accepting or rejecting an offered price once search is initiated.
These two results however, do not completely specify the optimal strategy. Given that an
acceptable price is received, we would like to know how much should be purchased at that
price. This question is investigated in the next section.

4. OPTIMAL ORDERING POLICY

In this section we present the optimal ordering policy once an acceptable price has been
received. In Corollary 3 we show that a nonincreasing sequence of critical numbers characterize
the optimal order quantity. In other words, once a price is received that is less than the reser-
vation price for that period, the interval in which the offered price falls determines the quantity
that should be ordered at that price. In Theorem 5 we obtain expressions which describe these
critical numbers when the holding cost function is convex.

Before presenting the next result we note that when n periods remain, the inventory level
is zero, and an acceptable price has been received, the optimal order quantity is equal to a,(x).
To see this, note that

Vn(0..) = min[(v, (0). I(x)]

by (2) and (6). This fact coupled with Theorem I yields [,,(Ox) 1I(x) whenever x a,.
Finally, since
(10) 1,(x)- /1x.a,(x)I= min lax + h(a - I) + v, 1(a I)].

it follows that ordering a,,(x) minimizes the expected cost attainable during the last n periods
when the inventory level is zero and x < a,. Note also that by Theorem 2(b), Equation (10)
can be written as
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(i) ,,(x)= min ax + H(a) + A,,J,.
l (a < n

COROLLARY 3: If n periods remain, the inventory level is zero, and an acceptable price
has been received, then the optimal order quantity is nonincreasing in the price offered. i.e..
a,(x') < a,,(x) whenever x' > x, n = 1.2 ... N. Consequently, a nonincreasing ,equence
of critical numbers {B,(n)1,'-i characterize the optimal order quantity. Specifically, it is optimal
to order k units whenever BA(n) < x < BA (n).

PROOF: From (6c) and (11), we have

I,,(x) l,,[xa,,(x)] = a,,(-) x + t[a,,(.)] + .4,,

1, x,,[ a,, ') = a,( .0) .x + Itlia,, .W ) I + .4,.,,., ,

giving
(12) .\[a,,(Ix') - a,,(,x)] >. 4 . ..- 4, , ,,+ Ilia,,(.v)] - tt[a,,(x')].

If a,,(x') > a,,(x), then (12) implies
x'[a,,(.\") - a,,(x)] > A,,,, -A....,, + Hla,,(x ] - tt[a,,Wx'l]

which yields

I,,(x') = a,,(x') • x' + ,,4 ,, + tt[a,,(x')I > a,(x) x' + 4 -.,," (

+ 11[a,,(x)I = /,,Ix',a,,(x)],

contradicting the fact that a,(x') is optimal when x' is offered. Q.E.1).

Intuitively, we would expect that when an offered price equals the critical number a,,. 'e
would be indifferent between ordering one unit and not ordering at all. If this were indeed the
case, the expected cost when the price is rejected, v,,(0), would be equal to (,, + v,, 1(0) yield-
ing a,, = 4,, - .4,, . This result could then be used to obtain a simple expression for the
B (n)'s when h () is convex. As we will show in Lemma 4, the above result holds if the set of
prices at which it is optimal to order one unit is nonempty. Unfortunately, as seen from the
following example, this is not always the case.

EXAMPLE 1. Let n= 5, s = 5, h(:)= 0 for all z and the price distribution be such that

P(X= 2)= I-i, and P(a < X b h) = --(_ a) for 0 < a < b < 4. where 2 is
4

excluded from all intervals and E is an arbitrary small number. Suppose the offered price in the
beginning of the fifth period is 3,

The expected cost of rejecting the offered price is (approximately)

5 + 2 x 5 = 15,

as one would pay the search cost of 5 and almost definitely receive the price of 2. at which one
would order 5 units. I lowever, the expected cost of ordering i units, i < 4, is (approximately)

3i + 5 + 2(5 - ) = 15 + i.

while the cost of ordering 5 units is 15. [lence, we would be indifferent between not ordering
and ordering at x = 3, which implies that aS = 3.
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Since at x = 3 we order 5 units, any price above 3 is rejected, and the optimal order quan-
tity a,(x) is nonincreasing in x, it follows that Ix :a,(x) II is empty.

LEMMA 4: If [x:a,(x) = 11 is nonempty, thena, = A,, - A,,-.

PROOF: Let 5 be the largest x such that a,(x) - 1. By Theorem 1, a, is the highest
price at which it is optimal to order a positive quantity. Therefore, i < a,. Consequently, we
can conclude from Corollary 3 that a,(a,,) < 1, but a, (a,) is positive so that a,(a ) = 1.
From Theorem 2 and Equations (7) and (11), we have

A,,-- v,(0) = /,(a,) = min aa, + H(a) + A,,-,]
<a<n

= la,(a,) "a + H[a,,(a,)] + A,_a , a,, + H(I) + A,,-,

which yields a, = A, - A,-,. Q.ED.

Whereas we cannot determine in advance the conditions under which Lemma 4 would
hold, we can proceed by assuming that the lemma holds, and determine the sequence (A,),,,-(
that satisfies Equation (9). We then can obtain {a,,} from -,, = In-1(A.). If {a,,} and (A} also
satisfy Equation (8b), by uniqueness of the solution, a, is indeed equal to A, - A,-).

It is interesting to note that contrary to what one might expect, a,, is not monotone in n.
Before Theorem 5, we give examples where a, is not monotone irrespective of whether
ix :a,(x) = Ii is empty or not.

EXAMPLE 2: (a) Consider again Example 1. Since we would almost definitely receive
the price of 2 after the first search, we have

v,,(0) = s + min lax + 11(a) + v,,.a(0)1.

Thus.

v1(0) = 5 + 2 7

v2(0)= 5+ min (2+ 7,4)= 9.

From v,(0) -l,7 ( ,), we have a = v1 (0) = 7 and

9= min (a2+ 7,2a,)

yielding a2 = 4.5. As shown earlier, as = 3. Therefore, a,, is not monotone in n.

(b) We note that a, is not necessarily monotone even if [x :a,(x) = 1] is nonempty. Con-
sider the case where the price distribution is the same as Example I. However, there is a hold-
ing cost of I per unit per period and s = 2. Then. /(1) =0, Wt(2) = 1. //(3) = 3 and
H(4) =- 6 and

vi (0) = 2 + 2 = 4

v2(0)= 2+ mint 4+ 1,2+41= 7

v1(0)= 2 + min 16+ 3,4+ I + 4,2 + 71= 11

v4 (0)= 2+rin [8+6,6+ 3+ 4,4+ I + 7,2+ II= 14.
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From v,(0) I,(a,), we have

4 a

7 = min [2a 2 + 1,a2 + 4]

11= min [3a3+ 3,2a3+ I +4,a 3 + 71

14 = min [4a 4 + 6,3a 4 + 3 + 4, 2a 4 + 1 + 7 ,a4 + III

yielding

a, = 4, a 2 = 3, a 3 = 4, a 4 = 3.
Note that in this example, a,(a.) = 1 for 1 n K< 4 and the condition for Lemma 4 holds. It
can be easily verified that a = v_ (0) - v_ 1(0) for all I < n K< 4.

THEOREM 5: If the condition for Lemma 4 holds and if the holding cost function h ()
is convex, then

(13) Bk(n) = a,,-. - It(k), where I K k < n.

PROOF: We have to show that

(a) The RHS of (13) is nonincreasing in k.

(b) It is optimal to order k units if x, the price offered, satisfies

(14) ao,_k - h(k) < x < aI-(k-) - h(k - 1).

To show (a), we note that
An-k+l = V,_&+ 1 (0) = fln-k+l(an-k+]) = min [aa,-k+l

I<a<n-k+l

+ H(a) + A.-k+l-,,] < 2 an-k+1 + H(2) + A,-k-I

= 2(A,_k+I - A,_) + t(1) + A,_k-l,

where the first equality follows from Theorem 2, the second from (7), the third from (11) and
the last from Lemma 4. Thus, by convexity of h (),

I(k) - h(k - 1) It 1(1) i An-k - An-k- l - Anfk+I + Ank

= nfk - k+ 1

and, therefore, (a) is true.

To show (b), suppose x is such that (14) holds. We show that 4,(x,k - j) <
l,(x-k - 1) for each j >, 0, and therefore ordering k units is at least as good as ordering
any amount less than k. Suppose In(x~k - j) > I,(x,k - j - 1). Then

(k - j - )x + A,4,_i1) + H(k - j - 1) < (k - j)x + A,( + H(k - j)

which yields

X > An_-k (_1)- An-.(k. - I (k - 1)

- af-(k--l) - h(k - j - 1) > n-(k-.) - h(k - 1),

where the last inequality follows from (a). This contradicts the right inequality of (14). There-
fore, I,(xk - j) < I1,,(x,k - j - I).
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I, .\,k + j I I, (.A, + J + I ) for each J > 0 by a similar proof.

I ience, it is optimal to order A units whenever (14) holds. Q..I)

5. REMARKS

The purpose of this study has been to investigate optimal search policies in the context of
a sequential model. The underlying inventory model has been chosen as a rather simple one.
There are no setup costs involved and the demand equals one unit in each period. It would be
interesting to investigate more general problems. We suspect that both the reservation price
property of Theorem I and the Wagner-Whitin 1131 type result of Theorem 2 (order only when
current inventory level is iero) would still hold Cor models with setup costs and arbitrary deter-
ministic demands. J he optimal policy would be a t unction of setup costs is well as the holding
cost and price distribution. The results should also hold when the price distributions are non-
stationary. ( iven that the initial inventor is /ero, the ordering polico \kill be such that there is
no inventorv in the beginning of periods wfith fai\orable price distributions.

Another interesting extension is the case "herein the search process is adapti,,e. I he
searcher does not know tihe exact distribution of price: the price ofler is used not onl' as an
opportunity to order at that price but also as a piece of' information to update the prior distribu-
tion. When the distribution of prices is not known exacl*y, the form of the optimal polc'} ,
not ibx\ious. As Rothschild 1101 points out, the reservation price property of Theorem I mould
not necessarily hold even for a one period problem. Rothschild presents the following example,
Suppose there are three prices. SI. S2. and S3, and that the cost of search is SlO.I. Prior
beliefs admit the possibility of only two distributions of prices. Either all prices are 3 or they
are distributed bet een S,1 and 2 in the proportions 99 to I, A man with these beliefs should
accept a price of 53 (as this is a signal that no lower prices are to be had) and reject a quote of

2 (which indicates that the likelihood that a much better price will be obser\ed on another
draw is high).

I lowever, when the distribution is at member of certain families of distributions but has
one or more unknown parameters, Rothschild 1101, l)e~root 151 and Albrighl Ill have shown
that the reservation price properly holds for the one-period problem. We conjecture that w4hen
the distribution of price is stationary but is not known exactly. search should be initiated only
when the inventory level is iero. If this is the case and the distribution belongs to one of the
families of distributions studied by Rothschild (101 and Albright iM). then the reservation price
property as %ell as the ordering policy presented in Section 4 should still hold.
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APPENDIX

THEOREM 2: Under the assumptions of the model, for all A, A = 1,2,.N,

(a) vA(0) = AA

(b) v,(z) = H(z) + vk,_.(0) for I < z < k.

Consequently, the search process is initiated only when the inventory level is zero.

Before proving Theorem 2, we establish two elementary facts.

LEMMA A: For any two positive integers iand j, H(i+ j) >, H(i) + H(j).

PROOF:

110i +.i)= _ h(k)= hW(k) + , (k)> hk) + h (k)
A-I -I A-I A-I A-I

- 11(i) ! H(j). Q. E.I)

LEMMA B: The integral f [v - I,,(x)] dF(x) -- G,I(.v) is strictly increasing in j,
continuous, and unbounded above.

PROOF: Since 1, , ,(v)] - y and /,,(x) is strictly increasing in x, it follows that V,,( v) is
strictly increasing in y. Hence, G,,( y) is strictly increasing, continuous (as Fis continuous) and
unbounded above. Q. E. D.
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PROOF OF THEOREM 2: The proof is by induction on k. From Equations (1), (3), (2)
and (6), we have

(A-i) vA(0) = u,(O) - s + EIV,(Ox)I

=s+ Eminv,(O),, min [ax+h(a-1)+vA-I(a- )1

= s + E min [v A(). 1W(x)1.

For k = I, (b) is obvious. To show (a), note that by (6), 1,(x) = x. Next, from (A-I)
we have

v,(0) =s + E min Nv,(0),- s + xdF W0+ f v 1() W
Vo (01)0vO)= s m1 1 O]= xdF Jx) + v1 (0) dF(x),

from which we obtain

(A-2) vj(0) F[v(0)] = s + f xdF(x).

(Note the close connection between v1 (0) and the maximizing price in the house selling prob-
lem.) In order to determine whether vj(0) is the unique solution to (A-2), note thai it is
equivalent to verify that s = I (y - x) dF(x) = G,(y) has a unique solution. The latter
result follows from Lemma B.

From (7) we have /,(a,) = v (0) and therefore a1 = v1(0). Thus, (A-2) becomes

( 1F(a I) = s + xdF(x).

which coupled with (8b) for n = I, gives A1 = a I = v1(0) so that (a) holds for k = i.

Assume (a) and (b) hold for k = 1.2. n - I. We show that the theorem holds for
k = t.

From (A-I), we have

v,,(O) = s + E min Iv,,(O), 1,,(x)]

= s + 1,,(x) dF(x) + v,,(O)dF(x)

= [F(a,,)] + f' , ,min [ax + h(a - I) + v,, -I(a - I0 dF(x)

= [F(a,,) iS + min lax + h(a - I) + H(a - I) + v,,-,,(O)} dF(x)

= IF(a,,)] S +f m," lax + 11(a) + A, dF(x)

= [Flin,,)] ,4,,/E(a,,

A,,.

where the second equality follows from Theorem I. the third from a simple rearrangement of
terms, the fourth and fifth equalities from the induction hypothesis and the sixth equality from
(Sh). Therefore (a) is true for A - n.
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Since we are assuming that (b) holds for k = n - 1, it follows that

(A-3) m,,(x) = m t lax + 11(a) + A,, j

a1 a-d
anld

4,' ,,) = S + f 1,,(xl dF(x),

which gives

(A-4) f A [4,, (x)1 dF(x) = s.

We note that by (4) and the induction hypothesis, for I < z < n

wi,(:) h(: - I) + v,, I(: - I) = h(: - I) + H(z - I) + v,, (0)

= I1(:) + v,, :0).

and therefore to prove (hi for k = i, it suffices to show v,,(:) = w,,(:) whenever - I That
is, we need to show u,,):) >, 11() + v,, (0) whenever 1 > I.

We can write

i = s + : min v,,(:). min lax + h([a + a -I) + v,, (: + a - 1)11

-s~ + E minluA,). K-,,() min't? -ax + h,) + a - I) + v, I(: + a I )1
, + L' minu,:). min an + hla + a(z- + v,, I(:+ +a- DIlt

. + E minu,,j:), min [ax + M,: + a) + A,, ,

s + :" minm laj:11(: + min ax + 1f(a) + A, , l1
I (I, a

s + m nin u,,:(z),1(=l + mi n.,, . min (ax + 11(a) + A, .1)I I,' .,,n .

s + l< minjo. (: , )I/(:) + min [v,, .(0)1., (-'

where the first equality follows from (3) and (2). the second from (1 , the fourth from induc-
lion hy pothesis and the last equality from the induction hypothesis and (A-3. 'The inequalit
flollows from Lemmaj A Hence.

I.,X-S) -Y , u (..-) --1 -M z I , , + E rain I it,(:)- M, :),. rain 1\,, (0).1. I,\ l1

If ), were less than (,, ). then from (A-5) we would have

) + > [ min 1I.I,, (.x l
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giving

[' - I,,_:(x)]dF(x) > s - [A,-: - I,,-:(x)JdF(x),

where the equality follows from (A-4). Hence.

G, -: (y) >, G.-: (A, -:) - G,,_-: Iv,,- (0) J.

contradicting Lemma B. Therefore. y > v,,-:(O), which completes the induction argument.

Q.E.D.
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1. INTRODUCTION

This paper provides an overview of' the computer-assisted search planning (C ASP) s~ stem
developed f'or thle United States Coast Guard to assist its search and rescue (SAR) operations
Thle system resides on a C'DC 3300 located in Washington. D.C. and can be used bs all IIS((
Rescue Coordination Centers (RCCs) in thle continental U nited States and 1i haii viii remlote
access terminals.

The Coast Guard is engaged daily in search and rescue missions wich range f'romn simple
to comptle x. The amiount of information available to predict the posit ion ofit hfe search target
ranges f'romn ext remely good to almost no intlormiation at all Vhe p~rocess, (if planning. coil
manding. and evaluating these searches takes place in Rescue ( oordinatimn ('enters I R('( s)
locatted throughout the U.nited States in major coastal cities

[hec entire planning process begins with thle aiwareness itat . distreSs, on thle % ater nii'
exist [htits assareness usuall s results, f'rom at telephonc call fronm a Inrend oi relutius ei itton a
radio comlmunication from thle boat or vessel Itself.

,,, imi 1ili.. I
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Next all available information has to be evaluated to decide whether or not to begin a
search, and what level of effort is required given the search begins. At this point a great deal of
effort goes into deciding where the distress incident occurred. This might be considered the
first phase of planning.

The next phase involves computing where the search target will be when the first search
units arrive on scene. Among other things, this requires the prediction of ocean drift and wind
velocity and the estimation of uncertainties in these predictions.

The next questions pertain to the effort allocation process-how much effort must be
expended and in what areas? Prior to the advent of computer search programs, SAR planners
relied upon various rules of thumb as presented in the National Search and Rescue Manual
Ill. Simplicity was necessary to facilitate hand computation, but at the same time prevented

adequate treatment of the many sources of uncertainty which characterize a SAR incident.

The search phase is the actual deployment of aircraft and vessels, the conduct of preset
search patterns, and the report of' results back to the RCC.

If the search is unsuccessful for that day, then the results must be reevaluated and a new
search planned for the following day.

his process continues until the target is found or until the search is terminated. In brief
(and in slightly more technical terms), the planning phases are as follows:

I ) i)cterminc the target location probability distribution at the time of the distress
Ici'dcnt

(21 I'pld.itc the target location probability distribution to account for target motion prior to
the earliest possible arrival of a search unit on-scene.

(3) )etermine the optimal allocation of search effort, and estimate the expected amount
of search eftort required to find the target.

(4) Ixccule the search.

(S) If the search is unsuccessful, evaluate the results and update the target location proba-
hhtt, distribunon to account for this negative information.

(b) Repeat the planning procedures in Steps (2) through (5) until the target is found or
the scalrth is terminated

rhesc planning phases are illustrated in the CASP case example given in Section 3.

I he first efforts at compuieri/ation concentrated on the target location prediction process.
theinographilt models %,ere used to compute drift and to estimate target position. The Mon-
tere Searc.h Planning Program and the Coast (uard's own Search and Rescue Planning Sys-
tent S-R F. represented earls computer assisted search efforts. Even today, in cases where the
ihornation a,.al,ible makes the planning straightforward, the SARP program does nicely.

In 1I"o. the Office of Research and Development in Washington funded development of
a more cumprehensie approach to search planning based in part on lessons learned in the
Mediterranean H-bomb search in 1966 (Richardson [51) and in the Scorpion search in 1968
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(Richardson and Stone 161). In 1972, the CASP system was delivered to the Operation,,
Analysis Branch of Commander Atlantic Area in New York for evaluation, implementation.
and training. The system was made operational early in 1974.

CASP is now in use in II Coast Guard rescue centers. In addition, CASP has been used
at the Air Force Central Rescue Headquarters at Scott AFB, Illinois, to help plan and coordi-
nate search missions for lost airplanes within the continental United States. A modification of
the CASP system has also been provided to the Canadians for inland SAR planning.

At the present time, the use of CASP is limited to open ocean searches. Even though
these searches represent but a small percentage of the total U.S. Coast Guard search operations.
CASP has been credited with saving over a dozen lives.

Section 2 provides a description of the CASP methodology. Section 3 illustrates the use
of CASP in an actual SAR incident involving the 1976 sinking of the sailing vessel S/V Spirit in
the Pacific, and Section 4 describes CASP training.

2. CASP METHODOLOGY

The CASP information processing methodology is based upon Monte Carlo simulation to
obtain an initial probability distribution for target location and to update this distribution to
account for drift due to currents and winds. A multiple scenario approach is employed to gen-
erate the initial probability distribution. In the sense used Icre, a scenario is a hpothetical
description of the distress incident which provides quantitative inputs for the ('ASP progran),
Bayesian updating is used to reflect negative information obtained from unsuccessful search

The principal output of the CASP system is a sequence of probabilily "maps" which
display the current target location probability distributions throughout the time period (f
interest. ('ASP also provides guidance for allocating search effort based upon optimal search
theory.

The ('ASP system is composed of a number of different programrs, each designed for a
different information processing function. The program components are MAP. POSITION.
AREA, TRACKLINE, COMBINATION. DRIFT, RECTAN(GII. PATII. and MllTI. the
functions are as follows:

(I) display the probability maps (MAP),

(2) generate an initial distribution of target location al the time of distress P()SIII)N.
ARF-A, TRACKLINE. and COMBINATION),

(3) update the target location probability distributions for molion subsequent to the tnoc
of distress (DRIFT),

(4) update the target location probability distributions for negali\e search results and coni-
pute the cumulative detection probability (Ri-('TANG LI and PATIIt, and

(5) calculate optimal allocations of search effort (MAP and Mil1.11)

These programs will he described below following presentation of an o \er\tc\ of the general
system design
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CASP System Design

The CASP system design was motivated by a desire to provide a highly realistic probabilis-
tic description for the target's location at the time of the distress incident and for the target's
substantial motion. In view of the success achieved in the Mediterranean H-bomb search [121
in 1966, and in the Scorpion search 151 in 1968, it seemed evident that a Bayesian approach
would provide a practical method for incorporating information gained from unsuccessful
search.

Target motion modeling posed a more difficult problem. Models which were amenable to
an "analytic" approach were not flexible enough to give a good representation of the search
facts. For example, Gaussian motion processes (or mixtures of Gaussian processes) were unsa-
tisfactory in cases where the search facts required a uniform or annular shaped target location
probability density. Markov chains based on transitions among search grid cells were unsatis-
factory in cases where one desired to change the grid in the course of an operation. In general.
these models tended to force the facts to lit the mathematics to an undesirable extent.

It was also desired to develop a modular systen so that additional features and improve-
ments could be made as time went on. In order to gain the confidence of the users, the system
had to be simple to understand and require a minimum of unfamiliar inputs. The design which
seemed best suited in view of the above considerations is a hybrid approach which uses Monte
Carlo to simulate target motion and analytic methods to compute detection probabilities.

A motivation for use of Monte Carlo was the recognition that computation of the poste-
rior target location probability distribution can be viewed as the numerical e'valuation of a mul-
tivariate integral of high dimensionality. In such cases (i.e., high dimunsionality), classical
numerical integration techniques perform poorly (see, for example, Shreider [71) especially
when the integrands can have jump discontinuities and are not of i simple analytic form.
These problems are typical of CASP applications. Discontinuities occur when the "target"
moves into a region where search effort is concentrated, and the joint probability density for
target position at several specified times during the search is a very complicated function.

The underlying structure of CASP is a Markov process, with a three-dimensional state
space consisting of points (X. Y. (!)). The variables X and Y denote latitude and longitude and
(it denotes scarch failure probability. For J = I . J, the Aih Monte Carlo replication

V . 4)' ) represents the target's current position (time is implicit) together with the cumula-
tic probahilith of search failure for that particular target replication computed for its entire his-
torN -arget notion is assumed to be Markovian and successive increments of search are
assumed to be statistically independent. Thus (A',. Y,. 4,) completely describes the state of the
/th target replication at a given moment.

Figure I provides a schematic diagram for the operation of the CASP system. All of the
programs mentioned will be discussed individuall% in subsequent subsections. The first step is
to construct i tile (called the "target-triple tile") consisting of samples from the target location
probability distribution at the time of the distress incident. This file is stored on computer disc
and processed sequentially by various programs.

fhcse initial points (A' Y I ) have failure probabilities 4 ),- I. since no search has et
heen carried out The target positions I., )1 are sampled from a probabili., density function
I of the form
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where bis the density corresponding to the kthl "scenario." and w, > 0 is the scenario's suhiec-

liel y assigned weight 1 - = II.
Monte Carlo samples from a probability density F are obtained by first using one of' tile

generation programs" POSITION, AREA, or TRACKLINE. Averages of' densities of' different
types are obtained by forming preliminary target triple files with two or more "generation" pro-
gramis and then combining them with the program COMBINATION. The construction of the
prior target location probability distribution is shown schematically in Figure I (a).

Updates for target motion (Figure I1(b)) or to account for negative search results (Figure
1 (0) are carried out by reading the "old" target triple file from disc into the appropriate pro-
gramn and outputting a ":new" target triple file. When program D)RIFT is used (Figure I (h)fI. the
v alues of XY and Y, are modified, but the value of (1, remains unLhanged. For ail update for
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negative search results, the file is first updated for motion by use of program DRIFT. The tar-
get triple file is frozen at the mid-search time and then modified by RECTANGLE or PATH.
These programs modify (, by use of Bayes' theorem but the position variables X, and Y,
remain the same since motion is frozen.

The probability distributions and optimal allocations of search effort are displayed using
program MAP or MULTI (Figure 1(d)). In both cases, this is a read-only operation, and the
target triple file is not modified.

Display

The MAP program displays the target location probability distributions in a two dimen-
sional format. Figure 2 shows an example of a probability map corresponding to an actual SAR
case. The geographical region is divided into cells oriented north-south and east-west and the
target location probabilities* for each cell are multiplied by 10.000 and displayed. Thus, the
number 1800 in a cell indicates that the target location probability is .18. Equal probability con-
tours are usually sketched to make it easier to visualize the probability distribution.

127 20W 127-10W 127-0 W 126-5oW 126-40W 126-30W 126-20W 126-loW 126- OW 125-soW 125-40W 125-30W
127-IOW 127- OW 126-50W 126-40W 126-30W 126-20W 126-10W 126- OW 125-50W 125-40W 125-30W 125-20W

49-5ON
2 3 1

4 9- 40N
4 6 5 19 4 1 1

49- 30N
8 8 14 09 114 95 30 8

49- 0N
15 47 123 192 188 . 0 144 - 93

49IN 44 85 64 65 53 72 105 126 133 68 .
49- ON

26 47 96 54 169 167 168 119 122 123 676

07 167 155 "-15i3 12 6 192 256 325 1
48 40N

4035,Y 102 133 126 131 63 50 59 111 130 "1

40 'O 99 87 65 75 69) 14 2)21 33. 319 19 1

65 65 78 89 r(2 164 115 21 7 10

6L 68 43 47 19
4 - ON--

,~ i r c . , r Ir.hah h, . t itiirihi oni prohbshillhc, ire mip11 l d iii ll ),ill)(I 1 . tl0 t irLIIIC.'il

A "quick map" in which symbols are used to represent ranges of probabilities can also be
output. The quck map provides a compact version of' the probability distribution which is suit-
able for a quick apprt sal (if the search situation and is convenient for inclusion in after-action
reports

F:inallv. MAP can output an ordered list of the highest probability cells and the amount of
effort to he placed in each cell in order to maximize detection probability. More will be said
aout search optimization in the last subsection.

1 ,r,1 i T wi vIti 'c- tt 5 '' r .t.t lrjs Ihln t, "a.rrmiicd int , %. ,I t elic tMonte ( trio prtwetire .'1iplmted
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Initial Target Location Probability Distribution

The initial target location probability distribution is constructed from "building block dis-
tributions" using a weighted scenario approach. The individual building block distributions are
generated by the use of one or more of the programs POSITION, TRACKLINE, and AREA.
Program COMBINE is used to combine the outputs of the individual "generation" programs.

In most SAR cases, there is scant information available about the target's position at the
time of distress. Sometimes, for example, a fisherman simply is reported overdue at the end of
a day. fie may have been planning to fish in one of several fishing grounds but did not make
his precise intentions known.

In other cases, more information is available. For example, it might be known that a
vacationer was intending to sail from one marina to another but never arrived at the intended
destination. In some cases, it might also be known that there was bad weather along the
intended route. This would make some positions along track more likely for a distress than
others.

In order to encourage inclusion of diverse possibilities in these scenarios. it is a reconi-
mended practice for two or three search planners to work out the details together. Ihe
remainder of this subsection will describe the programs POSITION, AREA, and TRA(KLINI
which are used to simulate the scenarios and generate the initial target location probabilit. dis-
tribution.

Position. A POSITION scenario has two parts, an initial position and a subsequent dis-
placement. POSITION can be used to generate a weighted average of as man., as ten scenarios

The initial position probability distribution is modeled as a bivariate normal distrihution.
and the displacement is modeled as a distribution over an arnular sector. In the latter distribu-
tion, the angle and distance random variables are assumed to be independent and unitorml\
distributed between minimum and maximum values input by the user. The displacement distri-
bution is useful, for example, in cases where the initial position corresponds Ito the las fix on
the target and where one can estimate the course and speed of subsequent movement prior to
the occurrence of the distress incident.

The displacement option can also be used in cases involving a "hail out" vherc it can
describe the parachute drift. The amount of displacement in this case will depend upon the
altitude of the aircraft and the prevailing winds at the time. Since these factors are rarcl,
known precisely, the capabilit. to "randomize" direction and distance is an important feature

.4rea. The second generation program is AREA This program is used to generate an ini-
tial target location probability distribution in cases where a general region can be postulated for
the location of the distress incident but where a normal distribution simulated b POSIII10N
would be a poor representation of the uncertainty. Each scenario for program ARIA deter-
mines a uniform probability density within a convex polygon ARF-A might be used, for cxami-
pie, when a lost fisherman's usual fishing ground is known from discussS1,.1 wlth friend, and
relatives. As with POSITION, AREA can generate a weighted axerag2 o( It scenarios
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7"racAline. The third and last generation program is TRACKLINE. This program is the
most complex of the generation programs and is used when target track information is available
from a float plan or some other source. TRACKLINE creates a probability distribution about a
base track. This track can be constructed from as many as 10 segments, each of which can be a
portion of a rhumb line or of a great circle.

The motion of the target about each base track segment is specified by three circular nor-
mal probability distributions corresponding to target position at the initial, mid-point, and end-
point of each segment. Each simulated target track is obtained by drawing random numbers for
target position from these distributions and then connecting the points with straight lines.

Figure 3 illustrates a typical situation. The target's point of departure and intended desti-
nation are assumed known, and a base track is constructed between these points. The base
track might be taken from the target's float plan or hypothesized from the target's past habits.
In the case illustrated by Figure 3, there are three track segments. The 50% circles of uncer-
taintv are assumed to grow in size to about midway along the track and then diminish. Since
the potnt of departure and intended destination are assumed to be known, the extreme end-
points of the entire track have zero uncertainty.
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Trackline. The third and last generation program is TRACKLINE. This program is the
most complex of the generation programs and is used when target track information is available
from a float plan or some other source. TRACKLINE creates a probability distribution about a
base track. This track can be constructed from as many as 10 segments, each of which can be a
portion of a rhumb line or of a great circle.

The motion of the target about each base track segment is specified by three circular nor-
mal probability distributions corresponding to target position at the initial, mid-point, and end-
point of each segment. Each simulated target track is obtained by drawing random numbers for
target position from these distributions and then connecting the points with straight lines.

Figure 3 illustrates a typical situation. The target's point of departure and intended desti-
nation are assumed known, and a base track is constructed between these points. The base
track might be taken from the target's float plan or hypothesized from the target's past habits.
In the case illustrated by Figure 3, there are three track segments. The 50% circles of uncer-
tainty are assumed to grow in size to about midway along the track and then diminish. Since
the point of departure and intended destination are assumed to be known, the extreme end-
points of the entire track have zero uncertainty.
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In some cases, there is information which leads one to suspect that the distress is more
likely to have occurred on one part of the track than on another. For example. as mentioned
above, the track may have passed through an area of storms and heavy seas. If desired, the tar-
get location probability distribution generated by TRACKLINE can be made to have a higher
density in such an area. This is done t'y specifying the highest probability point along base
track together with the odds that the d str,.;ss occurred there rather than at the extreme end-
points of the track. These inputs deteiriine a truncated triangular probability density for the
fraction of track covered before the distress incident occurred.

Updating for Target Motion

The DRIFT program is used to alter a target location probability distribution to account
for the effects of drift. Normaliv, the DRIFT program will cause the center of the distribution
to move to a new location and the distribution to become more diffuse.

Target motion due to drift complicates the maritime search problem. The prediction of
drift must account for the effects of both sea current due to prevailing circulation and predicted
or observed surface wind. Any object floating free on the ocean surface is transported directly
by surface current, and one component vector of drift is therefore equal to the predicted
current vector. A statistical file collected from ship reports over many years has been assem-
bled by the Coast Guard aid arranged by geographical location and month of the year. The file
in use in the CASP system covers most of the North Atlantic and North Pacific Oceans.

As mentioned above, wind is also important in predicting target motion. With regard to
this factor, there are two major considerations, The first is the drift caused by the wind imping-
ing on the drifting object's surface area above water, this is called "leeway." The speed and
direction of leeway is different for different objects, and is usually difficult to predict.

The second wind consideration is the movement of the surface layer of the ocean itself-
this is called "local wind current." It is one of the most complex and least understood
phenomena in the entire drift process.

The primary data source for surface winds in the CASP system is the Navy's Fleet
Numerical Weather Central in Monterey, California. Every twelve hours their computers gen-
erate a time series for hemispheric wind circulation- three of these time series are used to pro-
duce certain geographical blocks of wind data which are transmitted to the Coast Guard for use
by CASP. All data are retained in the system for two to three months.

The process of applying the drift motion to update a CASP distribution is simple enough.
First, a set of total drift vector probability distributions is computed for various geographical
areas based upon estimates of sea current, leeway, and local wind current. Then for each target
location replication, a random vector of net drift is drawn from the appropriate probability dis-
tribution and used to move the target forward a short time. The procedure is repeated until the
entire update time is taken into account.

Updating for Negative Search Results

Once a search has actually been conducted, one of the two search update programs. RV(-
TANGLE and PATII (depending upon the type of search), is run to revise the target location
probabilities to account for unsuccessful search. The effect is to reduce tile probabilities %ithin
the area searched, and to increase them outside.
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I pd .i mg the target location probabilities for negative search results is carried out by an
app lClt oll ot Ha1.cs' theorem. Recall that the target triple file contains J records of the form
SIt , .4) ) for I < j J, where the pair (X,, Y,) represents target position, and 0,

represcnts tihe probabilit. that the target replication would not have been detected by the cumu-
Ialixe search elort under consideration. The overall cumulative probability of detection taking
all simUlald targelts into account is called search effectiveness probability (SEP) and is com-

puled b\ the formula

S FP = I 4)/i.

Let ( be a region in the search area, and let /, denote the event. "target corresponds to
the Alh replication and is in region ('." The posterior probability A(C) that the target is located
in " given search Lailure is computed using Bayes' theorem by

J

\( ( = I/r('larget in CI Search failure) = Y Pr{BI Search failure)

= PrISearch failure I B, Pr{Bj/Pr{Search failure)

lhere I- \ . Y ) k; C) denotes the set of indicies corresponding to target replications in C

Now suppose th1t i/, denotes the probability of failing to detect the th target replication
during a particular update period. Using the independence assumption, tile new individual
CtLiiIalli'c fCailure prohabilit (1, is comlputed by

4) = q, I).

,, here +' denotes tlie cumulative failure probability prior to the last increment of search.

Ih,. oMI)LIohll of the conditional failure probability q, is carried out in ('ASP by use of
a ( It. ji, r ) -detection model as described below. Recall (e.g., see Koopman [21) that the
"literal rainge" between searcher and target (both with constant course and speed) is defined as
the dis.,incc a. closest point (if approach. The "lateral range function" gives single sweep cumu-

ilive detectiiin probability for a specified lateral range for a specified period of time. Tle
im gril of thc lateral range function is called the "sweep width" of the sensor.

Ilie CAS prigrans* are based upon the assumption that the lateral range function for
the scarch unit is rectangulir and is described by two parameters, A1 and /3. Here Al denotes
lhe otail , ,ilh of the swept path, and 13 denotes the probability that the target would be

detected For literal ranges less than or equal to M/2. The sweep width W4" for the rectangular
laiteril range f1.11t0ii1 described above is given by

Ni'gtimonmil uncertainties ('pattern error") are introduced into the detection model b%
Issurillig etch s eep is a random parallel displacement from he intended sweep. The random

* , , - :1 ,, I ,1 t ,~ .l i n .I r i\ 'l trillct '!lh'tII tw,ll.t tirlltiiii ix , l t tt iii 121 hi~',lhi 'i tu 
i
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displacements are assumed to be independent identically distributed normal random variables
with zero mean and standard deviation. This model was introduced by R. K. Reber (e.g.. see
Reber 141) and used extensively in certain Navy search analyses.

Rectangular lateral range functions are a useful way of approximating more complex
lateral range functions. If the actual lateral range function has sweep width M and is nonzero
over an interval of width M, then one may define t3 to be the average detection probability over
the effective range of the sensor, i.e., (3 = WIM. Appendix A of [41 shows that replacement of
the actual lateral range function by a rectangular lateral range function with average probability
03 usua!ly does not lead to significant errors in the computed value of probability of detection
for parallel path search. Cases where there is significant disagreement occur when the lateral
range function is close to zero over a large part of its support.

Let G, denote the cumulative normal probability distribution function. Let (u, v) denote
the target's position in a coordinate system where the origin is at the midpoint of a given
sweep, and where the u-axis is parallel to the sweep and the v-axis is perpendicular to the
sweep. Then for fixed M, (, and or, the single sweep probability p(u, v) of detecting the target
is given by

(I p(u, v)= 1GIU + -~- GQ, I u~ j IG,,v + MI- G,, Iv - 11.

where L denotes the length of the sweep.

If there are K search legs to be considered, and if (ut, v ) denotes the coordinates of the
jth simulated target position relative to the kth search leg, then the failure probability q, is
given by

A(2) q, = j I[I - p (u,', v,, .
,A=1

The application of these formulas in programs PATH and RECTANGLE can now be discussed.

Path. Program PATH is used to represent general search patterns constructed from
straight track segments. For example, PATH can be used to compute detection probabilities for
a circle diameter search where the search tracks are intended to cover a given circle by making
repeated passes through its center. PATH makes direct use of ( I ) and (2).

Rectangle. Program RECTANGLE has been designed for the special case where a rectan-
gle is searched using parallel sweeps. RECTANGLE reduces the computing time and amount
of input that otherwise would be required using program PATi. For a point outside the desig-
nated rectangle, the probability of detection q, is assumed to be 0. For a point inside the desig-
nated rectangle, "edge" effects are ignored and an average probability of detection is computed
,is if there were an infinite number of sweeps, each infinitely long.

The following line of reasoning originated with R. K. Reber. Reber [41 presents results in
the form of curves and tables, and these have been adapted to program RV('TAN(iIlE b% use
of polynomial approximations. Let S denote the spacing between sweeps. Since the sweeps are
assumed to be parallel and of infinite extent, the coordinate v, expresses the lateral range for
the kth sweep and the /h simulated target location and is given by

v,- ), + kS

for -oo < k < - and a number A,, such that A S.
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Now for arbitrary p., refer to (1) and (2) and define g by

(3) gji S) = Hj I I - P ( U./ + kS) G,, + AS + -G,fMI + kS -
&_- - 2 12

Note that since the sweeps are assumed to be of infinite length, one has u = oo and g defined
by (3) does not depend upon u. The function g is periodic in its first argument with period I.

Let k(S) denote the average value of g(g. s) with respect to the first argument. Then

k (S)= gQ, s),d.

The function . has been tabulated in 14] and is used in program RECTANGLE to
represent the failure probability q, = .(S) for a point lying within the designated search rectan-
gle. RECTANGLE and PATH agree (as they should) when PATt is used to represent it paral-
lel path search.

Search Optimization

Two programs, MAP and MULTI, are used for optimizing the allocation of search effort.
MAP provides a quick way of determining the search cells which should receive effort based
upon a constraint on total track line miles available. MULTI determines search areas for multi-
pIe search units under the constraint that each unit must be assigned a uniform coverage of a
rectangle and that the rectangles for the various search units do not overlap.

The method used in program MAP is based upon use of an exponential detection function
(see Stone 181) introduced b Koopman 13) and does not impose constraints on the type of
search patern emplo%ed The primary usefulness of this program is to provide the search
planner itoh a quick method for defining the area of search concentration. The following para-
graphs gise a brief sketch of the methods used in these optimization programs.

.%hap lLet there he .% search cells, and for I < i < N let p,, and a,, denote, respectively.
the target location probahilil and the area associated with the ath cell. The probabilit. denxiv
for target localion in the nth cell is given by d,, - p,,/c,. Suppose that total search effort is
measured b, the product of track line miles and sweep width.

Let y denote an allocation of search effort where -y(n) denotes the amount of search
effort (measured in area swept) allocated to the tith cell. Probability of detection Ptiyv is corn-
puted using an exponential effectiveness function, i.e.,

, l= ' , I exp(-y(n )/, ,, .

rhe obecti'uc is to maxinmie P, subject to a constraint on total effort available. This is easily
dlone using the techniques introduced by Koopman 131 easier prooifs are provided in Stone 181
and Wagner 112).

It can he shown that under the above assumptions, the initial increments of effort should
be concentrated in the highest probability densitv cells, and that there should be a succession of
expansions to cells having lower target location probability densitN.v

In order to derive thc formulas used in program MAP, a new collection of equi-densit
search regions is formed made up of the unions of all cells having equal probahily density
L.et
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K - the number of equi-density regions
(1, = the probability density for region k
14 the set of indices corresponding it the cells comprising region A
.4, = the area of region k.

Using the above notation

Lei E, denote the total effort which must he expended belore the optimal search expands into
the kih region. Assume that the equi-density regions have been ordered beginning with the
region having the highest density. Since search begins in the highest density region, we have
IF = 0 It can be shown that in general for A > 2

.k 1

(4) Ek = I + (In4 I- In d " A,.

ligure 4 shows output from program MAP illustrating the use of (4). The list shows the
25 highest probability cells specified by the latitude and longitude of the southeast corner. Each
cell 1, 15 intutes wide, and the numbers in the lasl column correspond to the values /' given
h (4). The planning advice given in 110) is to apply search effort to any cell for which the
,alue in the effort column is less than the total effort available.

rop 25
PROBABILITY LOCATION (S.E. CORNFR) IFFORT

1 0.05133 43-ON 69-45W
2 0.04107 42-45N 69-30W 35.0
3 0.04133 43-ON 70-OW 36.3
4 0.04100 43-ON 69-30W 40.3
5 0.03567 43-15N 69-30W 129.4
6 0.03467 43-15N 69-45W 152.8
7 0.03333 42-45N 69-1 SW 199.6
8 0.03267 42-30N 69-15W 227.5
9 0.03267 42-45N 69-45W 222.2

10 0.03267 43-15N 70-OW 2101
II 0.03200 42-30N 69-30W 264. I
12 0,02800 43-ON 69-15W 491.5
13 0.02733 42-45N 70-0W 5472
14 01.2533 43-ON 70-15W 701.3
15 01.2267 42-30N 69-0W 976.5
16 (.02233 43-15N 69-15W 983.1
17 11.2167 42-30N 69-45W 1095.1
18 (,02133 43-ISN 71-15W 1104A
19 (1.02 111 42-45N 69-0W 11753
21 (1,11167 43-30N i0i9-.1W 1505,8
21 0,001867 43-30N 619-45W, 505 8
22 0.01800 43- ON 69-oW 1659 9
23 0,01667 42-30N 68-45W 1968 0
24 (101601) 42-15N 69-0W 21377
25 0101600 42-15N o9-15W 2137 7



672 I1 R RI(It, \R ),)N \N)J If I)!,(1 N/\

Notice that the numbers in the effort column are not necessarily increasing. This is
because the list is ordered according to containment probability rather than probability density.

Multi. As mentioned above, program MAP does not take into account "simplicity" con-
straints which are considered important in operational planning. Program MULTI was designed
to overcome this drawback in cases where multiple search units are deployed in the same search
area.

The first simplicity constraint introduced is that each unit will be assigned to uniformly
search a rectangle. Figure 5 shows the dimensions of the optimal rectangle and the resulting
probability of detection under the assumption that the target location probability distribution is
normal. In order to use this figure, one first computes the normalized effort F by the formula

RT
(r l \ (r"

where R is the sweep rate of the unit. T is the total search time. and r,, and ,r,, arc the
standard deviations of' the normal distribution when referred to principal axes. The optimal
search rectangle will have halt' side given by U*Cr0 ,,l and Ur,, where the size Iactor L'° is
given by the designated curve with values read along the outer vertical scale.

Ma- - .. r,,at,,,,y of
dete% l-o anhaevaie h,

5 -1 0ti-hm l search plan
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R Probabilitv of Detection
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Figure 5 provides curves to determine the probability of detection for the oplmal rectan-
gle plan and for the unconstrained optimal plan. It is interesting to note that in all case, Ihc
probability of detection provided by the optimal rectangle plan is at least 95"il, of that pro. idcd
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by the unconstrained optimal plan. Thus, under the assumption stated, uniform search of the
optimal rectangle can be recommended without hesitation since, in most cases, the simplicity of
the rectangle plan is more important than the small improvement in effectiveness obtained by
the more complicated optimal plan.

MULTI is capable of allocating the effort of up to 5 search units to nonoverlapping rectan-
gles in a way which is intended to maximize overall probability of detection. The first step in
this procedure is to approximate the target location probability distribution by the weighted
average of k bivariate normal distribution where i < k < 3. This is done by locating the three
highest local maxima in the smoothed cell distribution and then associating each simulated tar-
get position with the nearest cluster point. If three local maxima cannot be found, then the
procedure is carried out with one or two local maxima. The mean and covariance matrix of
each cluster are calculated to determine the parameters of the approximating normal distribu-
tion.

The program next considers all possible assignments of search units to one of the three
approximating probability distributions. Since there are a maximum of five units and three dis-
tributions, there are at most 3' = 243 different ways of assigning units to distributions. For
each assignment, the program sums up the total effort available to search each distribution and
then computes the resulting optimal rectangle and associated probability of detection. If PA
denotes the conditional probability of detecting the target with optimal rectangle search given
that the target has the kth distribution (1 < k K k), then probability of detection A for the
allocation is given by

K
AI- y PkDk.

k-I

The program prints the allocation which gives the maximum probability of detection and
notes whether any of the rectangles overlap. If overlap occurs, then the next ranking allocation
is printed, and so on. This continues until an allocation without overlap is found or until the
top five allocations have been listed together with their associated detection probabilities.
Finally, when several units are assigned to the same rectangle, it is subdivided in a way which
preserves the uniform coverage.

Recently an alternative method for multiple unit allocation has been developed (see Dis-
cenza [i1) based upon integer programming considerations.

3. CASP CASE EXAMPLE

On 12 September 1976 the sailing vessel S/V Spirit departed Honolulu enroute San Fran-
cisco Bay. The owner, who was awaiting its arrival in San Francisco, reported concern for the
vessel to the Coast Guard on 14 October 1976 after it had failed to arrive. An Urgent Marine
Information Broadcast (UMIB) was initiated on 17 October. The following day, a merchant
vessel the M/V Oriental Financier reported recovering a life raft with two survivors from the
S/V Spirit which had sunk in heavy seas in mid-Pacific on the morning of 27 September. Sur-
vivors indicated three more crewmembers in a separate raft were still adrift. This information
opened an extensive six day air and surface search for the missing raft that eventually located
the raft with one of the missing persons on board.
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Each day's search was planned utilizing computer SAR programs. Initial distress position
information was gained by radio-telephone debriefing of the survivors aboard the M/B Oriental
Financier on several occasions. The search began 19 October based on a SARP* datum for a
raft without a drogue from an initial reported position of 36N 136W. The second day's search
was based on a SARP datum for a position 160 nautical miles to the northeast from the previ-
ous position (this position being determined from further debriefing of the survivors over
radio-telephone). The third through the six days' searches were planned utilizing CASP output
from a POSITION scenario consisting of an ellipse with a 160 mile major axis and a 60 mile
minor axis. The CASP program was updated by RECTANGLE and DRIFTI daily, and search
areas assigned to cover the highest cells which could be reached taking into account search unit
speed and endurance.

The following chronology is based upon the official USCG report and describes the utiliza-
tion of CASP in the search planning. This case is a good illustration of the many uncertainties
which must be analyzed during a search and the way both negative and positive information
contribute to eventual success.

21 October 1976

Search planning for the day's operations utilized the CASP program for the first time.
New probable distress position information given by the survivors was evaluated and the CASP
program was initiated using a POSITION scenario with center length 160 miles and width 60
miles oriented on 046°T, with the southwest end at position 36N 136W. This scenario was to
be used for the rest of the search. A search plan was generated for the 21 October search cov-
ering approximately 8 of the 10 highest CASP cells as given in MAP. Ten units were desig-
nated for the day's efforts and consisted of 3 Coast Guard, 2 Navy, and 4 Air Force aircraft and
the USS Cook.

The first aircraft which arrived on scene for the day's search reported the weather in the
search area as ceiling varying 200-1500 feet (scattered), wind from 330' at 8 knots, seas 4 feet,
and visibility unlimited except in occasional rain showers.

At 3:06 PM an aircraft located what appeared to be the life raft of recovered survivors in
position 35-38N 138-12W. M/V Oriental Financier had been unable to recover this raft when
the survivors were rescued. The USS Cook investigated and reported negative results.

Figure 6 shows the search plan for 21 October. Note that the target was eventually found
on 24 October in the first designated area C-I. There is, of course, no way of knowing where
the target was on the 21st.

22 October 1976

Planning for day's search was done using updates from the CASP program. Search units,
consisting of 17 aircraft (3 Coast Guard, 6 Navy, and 8 Air Force) and the USS Cook, were
designated areas totaling 67,920 square miles for the day's effort. Areas assigned were deter-
mined from the MAP's twelve highest cells. High altitude photographic reconnaissance flight
utilizing U-2 aircraft was also scheduled, cloud coverage permitting, to cover an area of 57,600
square miles.

*A compulcr program mpilcmeniing mcthod% described in the National SAR Mainual and a ptccur%,,r t(, ( ASP
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probability areas/distress positifon ellipse
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The first aircraft on scene for the day's search reported the weather in the general area as
ceiling 1800 feet (broken), winds from 1500 at 6 knots, seas 2 feet. and visibility 15 miles.

Search conducted during daylight hours utilized 15 aircraft, the USS Cook, and a U2 high
altitude reconnaissance flight. The USS Cook was unable to relocate debris sighted during pre-
vious day's search. Two Air Force aircraft failed to arrive on scene prior to darkness and were
released. Aircraft on scene searched 88 percent of 67,920 square miles assigned and obtained
POD's ranging from 50 to 82 percent. The high altitude photographic reconnaissance flight was
conducted from an altitude of approximately 50,000 feet.

The CGC Campbell arrived on scene and relieved the USS Cook.

23 October 1976

The Rescue Coordination Center (RCC) was advised by the Air Force that development
of high altitude film had shown an "orange dot" in position 35-16N 139-05W. The photo-
graphed object was described as a round orange object, approximately 7 feet in diameter, float-
ing on the surface of the water.

Search planning was done using updates from the CASP program. Search units, consist-
ing of the CGC Campbell and 8 aircraft (2 Coast Guard, 3 Navy, and 3 Air Force), were
assigned areas of highest CASP cells. The object photographed by reconnaissance aircraft was
drifted by SARP and the CGC Campbell and I aircraft dedicated to locate it.

The first aircraft on scene for the day's search reported weather in the search area as ceil-
ing 2000 feet, wind from 2000 at 12 knots, seas 2 feet, and visibility 15 miles.

Search conducted during daylight hours utilized 8 aircraft and CGC Campbell. Search
units covered 97 percent of the assigned 34,300 square miles with POD's ranging from 50 to 92
percent. Several sightings of assorted flotsam were reported but none linked to Spirit or rafts.
The object photographed by the high altitude reconnaissance flight on 22 October was not relo-
cated by search units.

Figure 7 shows the search plan for 23 October. Although not indicated in the chart, the
position where the target was found on the 24th is in the second highest probability density cell
from the CASP map.

24 October 1976

Search planning for the day's operations was done using updates from the CASP program.
Search units consisting of the CGC Campbell and 5 aircraft (2 Coast Guard and 3 Navy) were
assigned areas of highest CASP probability totaling 18,082 square miles, with CGC Campbell
and one Coast Guard aircraft designated for location of the object reported by the reconnais-
sance flight.

The position of the reconnaissance flight sighting of 22 October was drifted utilizing
SARP and the new position passed to CGC Campbell for search purposes. The 11:00 AM
SARP datum was computed to be 35-29.4N 138-39.2W with standard first search radius of 16.9
miles. The search plan is shown in Figure 8.
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45N . .
/

Distress Position Two
1st Raft Recovered 37-54N 133-36W

PACIFIC 19 0130Z STATES

Sc Francisco, - + -± ,

2nd Raft Recovered - I k- "SPIRIT Sank

35-53N 138-10W L___ Approx. position *%Los Angeles
24 2137Z 36N 136W Diego

ECHO SEARCH AREAS
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ecovered AREA UNIT POD

+ E-1 NAVY P-3 62%
E-2 NAVY P-3 52%

E-3 NAVY P-3 50%
E-4 AF HC-130 78%

E-5 N/S CG HC-130 58/74%
E-6 AF HC-130 92%

2 
-1 E-7 CG HC-130 64%

E-8 N/S AF HC-130 50/60%

E-9 CG HC-130 74%

Search plan based on CASP high probability

areas, distress position ellipse, and

E_ reconnaissance sighting (E-).

LE4.E :E \ -

- •- Note: POD is
the estimated

E-9 conditional probability
of detection given
the target is in the

E-T designated area.

29N
142W 138W

134W
FIGIJUE 7 Search plan for 23 October
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UNITED

Distress Position T STATES
37-54N 133-36W SAE

lot Raft Recovered
NORTH 36-15N 139-23W

PACIFIC 19 0130Z \\ + Sn Francisco
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35-53N 138-1W an ego

24 2137Z - SPIR1T" Sank
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36N 136W
27 1900Z

FOXTROT SEARCH AREAS

Hawaiian Islands Tropic of Can c------

V. I 15W 120W

FOXTROT SEARCH PLAN

AREA UNIT

36N F-1 NAVY P-3

KRaft Recovered F-2 CG HC-130

35-53N 138-IOW F-3 NAVY P-3
F-4 NAVY P-3
F-5 CG HC-130

34N _~F- 2

F-4 F-5

32N _

Search plan based on CASP high
probability area and reconnaissance
sighting (F-5).

138W 135W
FI(;tiE 8 Search plan for 24 October



(OSt GJARI) ('OMPtTFR- ,ssIsrtI) SI-\R(If (( ASP' 679

The first aircraft on scene for the day's search reported weather in the search area as ceil-
ing 1500 feet, wind from 0000 at 7 knots, seas 3 feet, and visibility 10 miles.

The CGC Campbell reported locating a rusty, barnacle encrusted 55 gallon drum in posi-
tion 35-27.2N 138-39.0W.

At 12:05 PM the search met with success! A Coast Guard HC-130H reported sighting a
raft in position 36-03N 138-00W with at least one person on board The CGC Campbell pro-
ceded enroute to investigate, and at 2:37 PM CGC Campbell reported on scene with the raft in
position 35-53N 138-10W. A small boat was lowered to recover the survivor, and at 3:01 PM
all search units were released from the scene.

4. TRAINING

CASP training began with an operational testing phase in cooperation with the New York
RCC This operational testing was useful in orienting the personnel to the benefits derived
from more detailed search planning, and provided an idea of what the full training problem was
going to be like.

Coincident with this, a training manual 19] and a cor, ,letel1 new combined operating
handbook [101 were developed encompassing all of the operational computer services available

At the time of official implementation in February 1974, a special four-day class was con-
ducted in the operation of the CASP system; this class was attended by one representative from
each Rescue Coordination Center. It was intended that these persons would learn the system
thoroughly and returi| to their respective commands and teach others. This plan was marginalh%
successful, and worked only in those cases where an extremely capable individual was selected
to, attendance.

During the next six months. personnel from the Operations Analysis Branch visited each
Ias' ( 'ost RCC for one week apiece in oruer to provide additional training. Subsequentil. the
same visit schedule wa, repeated on the West Coast.

;r , rer 'utluablc io( , loi raining has been telephone consultation Fortunatelk,. all mes-
-,,ees trwo and out of the computer are monitored at New York. and personnel can be helped
with the details of inpu: aind outpul with a quick telephone call on the spot.

i-rali', the Naliona; Searc'i and Rescue School h:is made (ASP training a regular part of
, uircul lli I hc ,ciho, or itico on (ion ernor, Island. is responsible for initial training of all

RCC personncl (among many others) in the techniques, of search and rescue The present SAR
-,Ln()i (iildnli, session is four Aceks iii duration w ii the fourth week devoted to computer
,,carch planning vslems irain in ()ver hall of t ilis time is devoted directil to (ASP

( uar. i) . the proce o, of separatig its adm ninstratio and opcra-
nJ, ',>sterns~r ct tiblishtog at, )peri !onial (omputer (enter I his new (enter 'wiltl gl'.c res-

,'- c .rlhnut ~r', .hr,'-: cs to ( ASP through on-line terminals and will improve ( ASP's
i i, hik iTnx aio! rcih,ibdih, I tcr;ictivc prograni control will make the modules easier 'o use

The rph~ilm r, if C 'ASP i1 operational situation> has been quite successful. in spile of
silZlllt;i ci. oiihcwirrrnLt- &,si- ojIatt( t; cit o , ii an conilmunicail -,,s service,
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Continued oceanographic research programs will expand CASP's applicability to important
in-shore regions. Implementation of the new multi-unit allocation algorithm [I1 is expected to
simplify the search area assignment problem. These additional capabilities coupled with
improved computer access and reliability should make CASP an even more valuable planning
tool in the future.
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CONCENTRATED FIRING IN MANY-VERSUS-MANY DUELS

A. Zitger

University oj Quebec at Montreal
Montreal, Canada

ABSTRACT

A simple stochastic-duel model, based on alternate firing, is proposed. This
model is shown to be asymptotically equivalent, for small hit probabilities, to
other known models, such as simple and square duels. Alternate firing intro-
duces an interaction between opponents and allows one to consider multiple
duels Conditions under which concentrated tiring is better or worse than
parallel firing are found by calculation and sometimes by simulation. The onl,
parameters considered are the combat group sizes (all units within a group are
assumed identical), the hit probabilities and the number of hits necessary to
destroy an opposing unit.

I. INTRODUCTION

Two extremes for the modeling combat attrition are given by the so-called Lanchester
theory of combat, which treats combat attrition at a macroscopic level, and by the theory of sto-
chastic duels, which treats combat attrition at a microscopic level and considers individual firers,
target acquisition, the firing of each and every round, etc. (see Ancker [1, pp. 388-389] for
further details). Actual combat operations are, of course, much more complex than their
representation by such relatively simple attrition models and may also be investigated by means
of much more detailed Monte Carlo combat simulations. Unfortunately, such detailed Monte
Carlo simulations usually fail to provide any direct insights into the dynamics of combat without
a prohibitive amount of computational effort. In the paper at hand, we will consider a relatively
simple stochastic-duel model to develop some important insights into a persisting issue of mili-
tary tactics (namely, what are the conditions under which concentration of fire is "beneficial").

In his now classic 1914 paper, F.W. Lanchester [10] (see also 111]) used a simple deter-
ministic differential-equation model to quantitatively justify the principle of concentration, i.e.,
a commander should always concentrate as many men and means of battle at the decisive point.
From his simple macroscopic model, Lanchester concluded that the "advantage shown to accrue
from fire concentration as exemplified by the n square law is overwhelming." However, this
conclusion depends in an essential way on the macroscopic differential-equation attrition model
used by Lanchester I10], 1111 (see Taylor 1141 for further discussion) and need not hold for
microscopic stochastic-duel models of combat attrition. In fact, this paper shows that for such
microscopic duel models it is not always "best" to concentrate fire.

Subsequently, many investigators have commented on the benefits to be gained from con-
centrating fire. For example, in his determination of the probability of winning for a stochastic
analogue of Lanchester's original model, Brown (61 stressed the fact that the model applied to
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cases of concentrated firing by both sides. Other investigators of deterministic l.anchestcr-t pc
models from the macroscopic combat-analysis point of view have also stressed this point (eCg
see Dolansky [71, Taylor [131, and Taylor and Parry [15]). Recently, Iavlor 1141 has examined
the decision to initially commit forces in combat between two homogeneous forces modeled b.%
very general deterministic Lanchester-type equations. lie showed that it is not alwa. s "best" to
commit as much as possible to battle initially but that the optimal decision for the initial com-
mitment of forces depends on a number of' factors, the key of which is hov, the trading of
casualties depends on the victor's force level and time.

The first reference to problems of strategy in multiple duels is fo(und in Ancker and Willi-
ams 121, who study the case of a square duel (2 vs 2) and arrive at the right conclusion that
parallel firing is better than concentrated firing. This is a natural conclusion since only one hit
is necessary to achieve destruction, and in concentrated firing there is a certain amount of
over-killing. In 1967, Ancker [1 makes suggestions for future research concerning mutliple
duels and states explicitly that the difficulties lie in the strong interaction between the contes-
tants. The possibility of needing more than one hit to achieve destruction in the simple duel
situation was introduced by Bhashyam [41 in 1970.

The purpose of this paper is to combine some of the above mentioned concepts, in order
to gain insight concerning a problem of strategy in multiple duels-should one concentrate
one's fire or not?

2. ASSUMPTIONS AND NOTATION

Let us consider two forces A and B that meet each other in combat. A consists of Ml units
and B of N units.

The following assumptions are made:

I. Firing is alternating, volley after volley, i.e., 4 fires all weapons simultaneously, then B
and so on until all units of a force are destroyed. This is contrary to the usual assumption of
either simultaneous firing or random firing within some time intervals as found in Robertson
1121. Williams [17], Ilelmbold [81, [91, Thompson [161, Ancker 131. It is felt. and will he
shown in a few cases, that for relatively small probabilities of hitting, this approach gives results
comparable to Ancker and Williams [2]. We will denote by V>, the probability of i winning if
shoots first i, j = A,B. The unconditional probability of winning will be denoted by [ 4 or VH

2. 1iit probabilities are constant and are respectively P4 and pq. with q, = I - p,. i = .4.B.

3. Each unit of force A requires K4 hits to be destroyed. Same for B and K.

4. The supply of ammunition is unlimited.

5. There is no time limit to score a hit.

6. In a multiple duel (more than I vs I) the units of" A concentrate their fire on a single
unit of B while the units of B each fire at a different unit of .4, or spread their fire over all
available units of .4, this last case occurs when M < N. B has to allow an amount of concen-
tration in order not to lose some shots. ('oncentration will be kept at a minimum to preser~c
as much parallelism as possible. For example if M - 3 and N = 7 the pattern of fire lor B ha,
to be
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7. The most general notation, for example, V4 8 (M,NK 4 ,KBp 4 p) will be avoided it
possible and replaced by an appropriate simpler form.

Before proceeding, a general remark ought to be made: most of the difficulties come from
the asymmetry in the situation and from the interaction between the opponents. The same
model has to express concentration, dispersion and partial concentration of fire. Moreover, the
probability of winning depends upon the whole past history of the duel.

3. MULTIPLE DUEL. ONE HIT SUFFICIENT TO DESTROY

Let KA = KH = I and let EGij) be the state of group A with i units, and of group B with
j units.

If A fires first, the next state is

E(ij) with probability q and

E(ij - I) with probability I - q4.

When B fires, let us first consider the case when j < i. Then,

E(i.j) becomes Ei - k j), k = 0. j with probability fkp q -k

and

E0,j - I) becomes E(i - k. j - I). k - 0. j - I with probability k - pq

If on the other hand j > i some regrouping has to be done.

Let j - ai + b with b < , a. b E /. The regrouping which spreads the fire the most is

given by

a shots are fired with a probability of success

I - (I - PB)"- I - A0 at each of i - b targets

a + I shots are fired with a probability of success

I - ( - pB)a+t - I - A at each of b targets.

Define r - min(ij). Then both cases j < i and j > i are identical if one defines the probabil-
ity of transition from state E(i.j) to state E(i - k, j) when B fires asI b l I -l (I -- A0 -A0 -A1
(3.1) 0. j, k, pn) - I i I ro (I - A k (I - A, 0

k 0 A- ,kj k( A, A
k,-O. I ., -h

kI-0.. I .

In the case j < i, a - 0, k0 - 0 and k, - k.
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It follows that if A starts and B returns fire once, the intial state E(i, j) can become

E(i. j) with probability q. 0 (i, j, 0. Pt) = q, qk

Ei - k. j) with probability q' (i. j, k, PH), k = 1. r

E(i - kj - 1) with probability (I - q'4 ) 0 (i, ./ - I, A, PH)- k = 0, I...,

where r'= min(i, j- 1).

If B starts, the initial state E(i, J) can become

E(i, j) with probability q, 0 (i, j, 0, PH) = q, qk

E(i - k, j) with probability q-4 0(i.jk,pH), k = I. r

E(i - k, j - I) with probability (I - q,4- ) 0 (i, j. A, PH), k = ,.. r

where r"= min (i- I, j).

Let VBI.4 (M, N) denote the probability that group B wins with initial state E(M, N) and

A starts firing. Then

(3.2) VRI 4(M, N) = qM q ' VB .,(M, N)

+ q 0m 0(M, N, k, pH) VHA 4(M- k, N)
k-I

+ (1- q4) 0 (M. N - I. k, PR) VRI4 (M- k. N - I).
k-O

This corresponds to a decomposition into all the mutually exclusive and exhaustive ways for B
to win if A fires once and then B returns fire.

In a similar way
(3.3) Vs1 (M. N) = qMq NB VBIH (M, N)

+ 7, q4l 0 (M. N, k, PH) V"IB(M - k, N)
A-I

+ (I- q' A) O(M, N, k, pH) V 8 1 (M- k. N- 1).
A -1)

Since we have

V4(fM. 0)= lBR(A,O)= 0 all M

and

l,' ,4(0, N) = V8 18 (0. N) = I all N

we can calculate in succession all required probabilities. For example, since 0 (1, 1, 1. PH) - PH,
one finds Val4 (i. ) - q4p / (I - q4q 8 ). Using Vil 4(. I) and 1(1.l.0. PH) - qH,
0(1,2,1. Pi) - I - qA, one finds VB1,(1,2).

Explicitly, one gets, by assuming that A starts half the time,

I/ (MI1-1 (( V1L4 (M, I) + VIBW, M )

2plf q ,2 (4 + q4')/ (I - qtq 4J.2P q,-*' f
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One can also obtain for qA = qB = q

V8(2, 2) = 1 + 4q + 4q
2 + 7q3 + 4q4 + 3g5 + q6

2(1+ q) 2 (1 + q2 ) (I + q + q2 )

A comparison with the triangular duel and the first square duel 121 for p - 0, q 1
gives

V,(2, 1 = 1 p q(1 + q2 ) - q(I + q2) 1/6
2 (1 - q 2)(1 - q') 2(1 + q)(I + q + q2) q-I

and V,(2, 2) --- 1/2 which are the same limits as the one obtained from Equation 29 and 37

in [2].

Table I gives some results for V8 (M, N, P, P ).

TABLE I - (x 104)

M N P4 0.3 0.3 0.5 0.5 0.7 0.5 0.7
Ps 0.3 0.5 0.3 0.5 0.5 0.7 0.7

1 1 5000 6538 3462 5000 3824 6176 5000
2 2 5166 7307 3100 5317 3850 6873 5447
3 3 5678 8227 3405 6418 5081 8343 7386
3 5 9634 9982 8869 9913 9805 9998 9994
5 3 1292 3806 0368 1780 0997 3907 2832
5 5 7258 9614 5118 8940 8359 9920 9848
5 7 9831 9999 9422 9994 9986 10000 10000
7 5 3418 7843 1626 6060 5075 9090 8629
7 7 8850 9978 7538 9919 9853 10000 10000
10 10 9900 10000 9708 10000 10000 10000 10000

It should be noted that if PA = pB = p and M - N then V8 > 4 and increases with p or

with M. We conclude: Par, llel firing is better.

No simple relationship exists in the case pA ;e p8 . Neither Mp4 vs Nps, nor M 2p, vs

N 2p, are sufficient to decide if V8 > 1

4. SIMPLE DUEL. K HITS NECESSARY TO DESTROY

Let M - N - I and let VIA (K 4 .KB) denote the probability that B wins the simple duel
if A starts firing and K4 hits are necessary to destroy A and KR for B.

It is evident that

V81(K 4,KH) - P4 V 8 (KA, K8 - I) + qA V 18 (K 4, KB)

and

V8,B(K 4 , KS) - p, VV14 (K4 - I, KB) + q8 V 14 (K 4 , K1).
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This gives

(4.1) (1 - qAqa) VBIA(KA, KB) - PAP VBIA(KA - 1, KB - 1)

- PAqB VB(A(KA, KB - 1) - qAPH VIA(KA - 1. Ky) = O.

In order to solve this difference equation, following Boole 151, let us define

x - KA, Y - KB

Ux.y- VBIA(X - 1, y - 1)

Dxu - u+.y and Dyu - u,.

Substituting these into Equation (4.1) we get

[( 1- qA qB)D D, - pA pB - pA qB D - q PH DJu -O.

Let D, = a.

((1 - qA qB)a - PA qB)Du - pa(aqA + PA)U

which gives

u = p(pA + qA Dy)[(I - qA qB)D, - PA qB] - ' 0 (y)

where O(y) is arbitrary. Then,

u x I pP qAx-'A q D' 0 (Y).
Iri qx)XDx q,4 qB '

Since D; 1 O(y) - O(y - x) and

PA - PA qB

l- qqJ 1 - q1 q

we get
PI I I x+j-I

u-o - J P,+Jq- 'qh (I -q q)J (y - i- j).

Taking into account that
PB qA

VBIA (1- 1)- p q
1- qA 0s

a good choice for 0(0) is

0(t)- I if I > 0

-Oift < 0.

Defining r - min (KA, KB - 1) the solution becomes

FAK81I1KAlIKA +11I KA K4 A
(4.2) VBIA(KA, KB) - . . j P*I PB q 4  q(I-q 4 q) A,

,-O j-0

with

VBA(KA, 0) - 0and VI 4 (0. KB)- I.
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One can verify by substitution that this is a solution.

One can evaluate the other probabilities of winning by

VA 4B(KA, KB. PA, py) = VfIA(K8, KA, P8, p.),

VI" 18 (KA, K ,4 P8) = I - V4A(K 4 , KH, PA. py).

and

V4 14(K 4 , KB, PA,PB) = I - V IA(K ,4 , KB, P4,PB)"

Table 2 gives some results for V914 (K4, K8 , P4, PB) and VBs (KA, K, p4 pfs).

TABLE 2 - (x 104)

p,4=- .3  Ps = .5 p, = PR =".5 P4 = .5, PH = .7
KA Ka VB[A VBIB V IA V"BIB Vs.4 tH, B

1 1 5385 7692 3333 6667 4118 8235
5 3 4257 5010 1139 1728 2576 3579
5 5 8201 8630 4512 5488 7414 8381
7 5 5955 6541 1674 2266 4159 5278
7 7 8695 8981 4599 5401 7981 8669
10 10 9160 9330 4671 5329 8545 9002

This table indicates that Vl = 1/2 if K4 - K8 and P4 = PB = 1/2, VB increases towards I
if K 4 - K8 and PB > P4 and I Vj 4 - Vs8l8 decreases if K 4 and K8 increase.

An interesting comparison is to be made with the results given by Bhashyam 141. Under
an assumption of an exponential distribution for interfiring times he finds that the probability of
B winning is, using our notation,

P(B) - I - I P4 (KB , K 4 )
P 4 +PB

where 1, is the incomplete Beta function. The correspondance in the notations being Xp for P4,
X °p for pB, R for K8 and R for KA,.

Table 3 shows at what rate a model with alternate firing converges towards Bhashyam's
model.

Alternate firing gives a good approximation if p is small. In fact, consider K4 and KY
fixed and PA - c PB with PB - 0.

One can show that
I A .

liM V8 14 - (c +I - lJ 1 +c

and this limit from a well known theorem is
i- !1, (K,.K 4 ).
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TABLE 3 - Rate of Convergence of V8 to P(B)

P4  Pa K, K9 VH P(B)

0.4 0.2 5 5 0.1054
0.2 0.1 0.1265
0.02 0.01 0.1431
0.002 0.001 0.1447

0.1449
0.1 0.2 5 2 0.3391
0.01 0.02 0.3501
0.001 0.002 0.3511

0.3512
0.1 0.2 10 10 0.9491
0.01 0.02 0.9366

___ _ 1_ _1_ _ 10.9352

5. SQUARE DUEL. 2 HITS NECESSARY TO DESTROY

Let M - N - 2 and K4 - KH - 2. One can represent the state of the two forces by (ij,
i2, Jl. j2) with il, i 2. Ji. j2 - 0.1,2, representing the number of hits necessary to destroy. For
example, (1, 1, 0, 2) means that A has 2 units that can be destroyed by one hit each and B has
one unit that has been destroyed by 2 hits and one unit untouched.

All attempts to arrive at one or two difference equations have been in vain. Two
equivalent approaches have been used. In the first, taking PA = PH - 1/2, and defining A, as
the matrix of the transitional probabilities corresponding to the case when A fires first, and B
the corresponding matrix when B fires first one obtains:

V4 by summing all the probabilities for the events (i, j; 0, 0) in lim (AB)" and V) by
summing all the probabilities for the events (0. 0; i, j) in lim (BA)P.

The matrices are 29 x 29. The possible states of A are such that i1 > i 2. The possible
states of B are such that J, < j2 and exclude ji - j2 - I since A concentrates its fire until des-
truction is achieved.

Assuming the ordering il > i 2, two variations are possible. In Case I, when the state is
(2,1; 0, j) with ] - I or 2 and B fires, B chooses at random among the two units of A. In Case
2, 8 fires on the second unit of A, which can be destroyed by one shot. We find

In Case I V4 - 0.5586

and in Case 2 V4 - 0.5396

In both cases concentrated firing is better.

The other approach consists in writing down all the equations that define the battle. For
example,

V4 4 (2,2;I,2)- (1- q4) V4 18(2, 2 0, 2) + q~ 4 R(2,2,.2).

The difference between Case I and 2 is seen by considering

V4 19(2,1,0.1) - O.5p V4 14 (1,I;I0.) + 0 5p V4 4(2,0,0.1)

+ q# V4 J (2, 10. )
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or

VAIB(2, 1;0, 1) - PB VAIA (2,0,0, 1) + qB VAIA (2, 1;0, I).

A third variation is possible in which no ordering is assumed for the iKs. Only the states with
il - 0 are eliminated, In this case, B fires always upon the last unit of A but 2 states are con-
sidered

VA/418(2, 1;0, 1) = py VA1A (2 ,0;0, i) + qB VA 1A ( 2 , 1,0, 1)

and

.41,a(, 2;0, 1) - py VAI. 4 (1. 1;0. 1) + q8 V,4 A (2 , 1;0, i).

In this case V, - 0.5553 for p4 =- p = 0.5,

The total system consists of 35 pairs of equations and is solved by iterations.

Table 4 gives some results for the square duel in this last case. As in the two preceeding
cases, concentrated firing is better.

An extension of this last case is considered in the next section.

6. MULTIPLE F,& R DUELS. K HITS NECESSARY TO DESTROY

Let us rest ct ourselves to the case of a fair duel, i.e., one such that M = N = n,
p 4 - pH - p and KA - KB - K.

All nondestroyed units of A concentrate their fire on a single unit of B, volley after volley
until destruction is achieved. For the next volley they concentrate their fire on the next undes-
troyed unit of B.

There are nK + I possible states for B

K, K, . K

1, K, K
0,K, K

0,0, .

On the other hand B spreads its fire over all units of A and all states are possible, eliminating
only the destroyed units.

Since there are K" I different states with j zeros the number of possi'le states for A is
(K "+' - 1)/(K- 1).

This means that in order to find VA(K,.... K;K. K) we will have to solve a linear sys-

tem consisting of (nK + I) (K"+ - /K- 1) pairs of equations of the form

V4,,4 fstate) - linear combination of V.A8 (outcome of A firing)

'4 3 (state) - linear combination of V, A( (outcome of B firing).
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TABLE 4 - (x 104) Square Duel

Number
of

PA = PB = P VA IA VA IB VA Iterations

0.999 9980 40 5010 3
0.99 9809 382 5096 3
0.95 9193 1599 5396 4
0.9 8666 2573 5620 5
0.7 7573 3850 5712 8
0.5 6781 4324 5553 13
0.3 6117 4786 5452 25
0.1 5598 5198 5398 80
0.05 5487 5292 5389 157
0.025 5434 5337 5385 303
0.02 5423 5346 5385 373
0.01 5402 5364 5383 844

Unfortunately, the number of possible states increases very rapidly. A few values are
given:

Number of States

K = 2 n 2 35
3 105
4 279
5 693
6 1651

K = 3 n = 2 91
3 400
4 1573.

This, however, is much better than (K + )2", which is the number of possible .;tales without
any restrictions.

S;nce writing down the necessary equations is an impossible task, a computer program was
written to build the equations and solve them by iteration. The main steps are:

(I) define the necessary states,

(2) define VIA = 0 for all states
14,tH = 0 for all states it' H is not destroyed
V4 H = I if 8 is destroyed.

These will be the initial conditions.

(3) For each state determine the number of effective units M 4 and NH. If .4 fires. the
number of targets is T = I and the degree of concentration is c = M 4 . If B fires, the number
of targets is T = min(M4,. Nj). If M 4 >, NH, the degree of concentration is - = I and if
NH > 414, then NH - a A14 + hand e1 = a for T, - Y 4 - hunits and c 2 ,= a + I for T,- h
units.



(ONC[NTRAiII) FIRIN(i IN MANY-VI:RSUS-M-'N D111 Is 691

(4) Let Q.(i, j) denote the probability for a unit to go from state K = i to state K = j if
submitted to fire of concentration c. Then the matrix Q2, for example, has the form

0 1 2 K

1 1 - q 2  q 2

2 p2  2pq q\

KI Np
2 2pq \q 2

In general, for i 1, Kand j =0,1,. K

ii c j) plIJ qc-+) for j d 0

G' j) K

All required matrices are constructed.

5) For each state the equation giving VA 1A is constructed.

Let i denote the state of the target unit.

Let j denote the states of this unit after A has fired, the rest of B being unaffected.

Then,

V, 4 (A,i 0 QM Q (i, j) V 4 1B(A; j)

the corresponding equation for VA IB is of the general form

VA 18('1,' 2 .  iTB) = 1j Q"' (ieJe)J VA I A Qj1,. j7- -,B)

For example,

I 2

6) When all possible states are gone through, the last calculated value is

V4n ,(KK .... , K, K ... K

It is compared, usually within l0F6, to the previously calculated value and the process is
iterated until convergence is achieved.

Table 5 gives results for several values of M and K. The dimension of the linear system
is twice the number of states. The probability of a hit is taken as p - 0.5. Time is given for
some cases. The computer used was a CDC6400.

The value p - 0.5 was chosen because time increases very fast if p decreases, as is seen
from Table 4.
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TABLE 5 - (V A x 104), Multiple Fair duel. Exact Results

Number Number Time
M= N K of of VA (in seconds)

Equations Iterations

2 2 70 13 5553
3 182 15 5988
4 378 17 6364
5 682 19 6661

3 2 210 13 5537
3 800 15 6211
4 2210 17 6822
5 4992 19 7289 1700

4 2 558 13 5152
3 3146 15 6132
4 11594 17 6872 6141

5 2 1386 12 4429
3 11648 15 5931 8960

Since exact calculations of VA become too time consuming, some results were obtained by
simulation. Table 6 gives some results. The number of trials was 2000 for p ;1 0.5 and 6000
for p = 0.5, A started the duel in half the cases.

TABLE 6 - (V A x 10),
Multiple Fair Duel. Simulation Results

p 0.1 0.3 0.5 0.7 0.9

M K

2 2 550 542 561 569 564
4 574 562 522 485 403
6 583 490 351 148 4
8 580 382 120 2 0
10 562 249 11 0 0

2 3 600 600 611 622 575
4 652 632 599 628 642
6 672 606 564 494 270
8 705 554 444 181 2
10 725 482 233 6 0

2 4 586 616 642 691 778
4 715 694 685 666 722
6 774 700 653 672 651
8 796 684 608 548 205
10 797 643 524 204 1

2 5 630 646 674 708 705
4 754 753 760 748 556
6 812 786 725 665 852
8 838 777 668 698 601

10 878 740 639 594 134
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We note that for large values of p the behaviour of V4 is erratic. This is due to the deter-
ministic issue of a battle for p = I as a consequence of alternative firing. For example, if
M = 6, k = 2 and A starts firing, the sequence of states is B: 022222, A: 211111, B: 002222, A:
210000, B: 000222, B wins.

Two independent estimates of the error can be made, one by comparing the results of the
simulation with the calculated values in Table 5 for p = 0.5, M = N - 2 or 4 and K = 2, 3,4,
giving s = 0.0093, the other estimate is given by assuming a binomial distribution with 6000
trials giving s = 0.0065. To be on the safe side one can conclude that concentrated firing is
better if the simulation gives VA >, 0.519 and parallel firing is better if the simulation gives
VA < 0.481. This does not take into account the bias introduced by alternate firing for "large"
values of p. Since the sign of the bias is evident, one can adjust one's conclusions, for example
for M = 10, K = 4 and p = 0.5 the observed value 0.524 is pulled down and almost certainly A
wins more often than B. On the other hand for M = 8, K = 3 and p = 0.5 the value 0.444 is
certainly pulled down and one can hardly conclude that B wins more often.

Table 7 summarizes all the results obtained.

TABLE 7 - Better Strategv of Firing

Concentrated Parallel Border cases

p=0.1 K >2 K=I

p=0.3 K=3 2 < M <4 K=2 M> 7 K=2 M=5or6
K=3 2 < M <8 K=3 M=9orl0
K = 4,5 2 < M < at least 10

p=0.5 K=2 2< M< K3 K=2 M > 5 K=2 M=4
K=3 2< M < 6 K=3 M > 7
K=4 2 < M< K10
K= 5 2 < M < at least 10

One can conclude that concentrated firing is better if the combination of group size and
hit probability does not produce a high degree of overkilling. For K > 2 a rough rule could be
concentrate firing if pM < K (the exception is p = 0.5, K = 4 and M = 9 or 10).

Up to this time we have compared two strategies: parallel firing and concentrated firing.
In the next section we will attempt to define the concept of partial concentration.

7. NULTIPLE FAIR DUELS. PARTIAL CONCENTRATION OF FIRE

Let M = N = n, pA = pa = p and KA = K8 = K. Let cx be the maximal number of non-
destroyed units of A that are allowed to concentrate their fire on a single unit of B, volley after
volley until destruction is achieved.

If CX = I, A uses parallel firing in the same manner as B. If cx - n, A uses concentrated
firing.

Under partial concentration the number of targets for A is given by the integer function

TAI + c; -I
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and the number of possible states for B is

(n- TA + I)KTA +
K-I

which reduces to nK + I for TA= 1 and (K"+' - 1)/(K - 1) for TA n. The number of
linear equations to be solved becomes

2 K- I (n- TA + 1) KTA + KT-I

The value cx = 1 (TA - n) was used to determine the precision of the obtained results,
since VA = 0.5. For p = 0.5 the maximum error found was 3 x 10' and for p = 0.1 it was
1 x 1074.

Table 8 gives some calculated results for p = 0.5.

TABLE 8 - (VA x 104), Partial Concentration

Number Number
M=N K Cx of of VA

Equations Iterations

3 2 2 330 13 5404
3 2 1760 15 5950
4 2 6290 16 6412

4 2 2 930 12 5639
3 930 13 5192

3 2 7502 14 6304
3 7502 15 6127

5 2 2 3906 12 5541
3 2394 12 5311
4 2394 12 4523

Comparing the results of Table 5 and Table 8, one sees that partial concentration with
cx = 2 is better than total concentration for the cases M = 4 and k = 2 or 3 and any partial
concentration is better for the case M = 5 and k - 2. Further investigations are needed.

8. SUMMARY

The proposed model is an idealization of combat between small groups of individual
identical firers and is very far from the very complicated process of real combat. However, it
has provided, through the use of alternate firing as an expression for the interaction between
opponents, some important insights into combat dynamics that could be further investigated
with, for example, a high-resolution Monte Carlo simulation. It has been shown that alternate
firing gives the same results for small hit probabilities as some previously developed models. It
has also been shown that the relationship between the size, the hitting capacity and the resis-
tance of the opponents is a complex one and that concentrated firing is better than alternate
firing if the amount of over-killing is not too high. Moreover, some evidence suggests that par-
tial concentration can be even more effective.
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ABSTRACT

During basis reinversion of either a product form or elimination lorm linear

programming system, it may become necessar. to swsap spike columns to effect
the reinersion and maintain the desired sparsit) characteristics This note
shows that the nnl. spikes which need be examined hen an interchange is re-
c ired are those not yet processed in the current external hump

I. INTRODUCTION

An important component of a large scale linear programming system is the reinversion
routine. This paper addresses an important ancillary technique for implementing a reinversion
routine utilizing the pivot agenda algorithms of Itellerman and Rarick 15,61. Production of fac-
tors during reinversion typically involves a left-to-right pivoting process. Unfortunately. during
the left-to-right process, a proposed pivot element of a spike column may be zero, in which
case columns are interchanged in an attempt to obtain a pivotable column while maintaining
desired sparsity characteristics. In this papcr we show that the only columns which need be
considered for the interchange with a nonpivotable spike are other spikes lying to the right
within the same external bump.

11. PRODUCT FORM OF THE INVERSE

Let B be any m x m nonsingular matrix. One of the most common factorizations for B
is the product lorm which corresponds to the method for solving a system of linear equations
known as Gauss-Jordan reduction (see [3, 41). This procedure is used to represent B I (or a
row and column permutation of B- 1) as the product of' matrices each of the form

Z Z -jth row

*This research was supported in part by the Air Force Office of Scientific Research under ('ontract Number A[ t)SR
77-3151
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where z is an m-component column vector, and j is called the pivot row. A few observations
concerning Z are obvious.

PROPOSITION 1: Z is nonsingular if and only if zj * 0.

PROPOSITION 2: Let /3 be any m-component vector having/3, - 0. Then Z/3 -/3.

PROPOSITION 3: Let /3 be any m-component vector having /3j 0, and let ej denote
the vector having jth component I and all other components zero.

9-k11/j, if k ;ej
Let zk - I /I3), if k-j . Then Z/3-e .

Let B (i) denote the ith column of the matrix B. Consider the following algorithm.

ALG 1: Product Form Factorization

0. Initialization

Interchange columns of B, if necessary, so that the first component of B (I is nonzero.
Set i - 1,/3 - B(I), and go to 3.

1. Update Column

Set/3 - E' - ' ... EIB(i).

2. Swap Columns If Pivot Element Equals Zero

If /3, ; 0, go to 3; otherwise, there is some column B(j) with j > i such that the ith
component of y,- E'- ... E'B(j) is nonzero. Interchange B(j) and B(i) and set/3 - y.

3. Obtain New Elementary Matrix

Set

S1//3, for k i
zk - -/3kj//3, otherwise,

4. Test for Termination

If i - m, terminate- otherwise, i - i + I and go to 1. At the termination of ALG I,
E'... E' is a row permutation of -

'.

In the following two propositions we show that if in Step 2,/3, - 0, then the proposed
interchange is always possible. Consider the following:

PROPOSITION 4: For i < j, E) ... ElB(i) - e'.
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PROOF: By the construction of E' and Proposition 3, E'... EIB(O) = e'. By Proposition
2, EJ... r+Ie'= e'. So E'... E'B(i) = e'. Using Proposition 4 we may now show the fol-
lowing:

PROPOSITION 5: For 2 ( , < m, let 3 = E' - ' ... E'B(i). If t3, = 0, there is some
j > isuch that IE'-' ... E'B(j), e 0.

PROOF: Suppose [E' - I ... E'B(j)], = 0 for all j > i. By the construction of
E, ... E' , in ALG 1, and Proposition I, each factor is nonsingular. Since B is nonsingular,
E' I ...EIB is nonsingular. By Proposition 4, E'- ' ... E'B(j)= el for I < j< i- I.
Hence, the ith row of E' - ' ... ElB is all zero, a contradiction.

III. BUMP AND SPIKE STRUCTURE

In order to minimize the core storage required to represent the ETA file, i.e.,
E. ... E, the rows and columns of B are interchanged in an attempt to place B in lower tri-
angular form. If this can be accomplished, then the m nonidentity columns of E. .E',
have the same sparsity structure as B. Consider the following proposition:

PROPOSITION 6: If the first j - I components of B(j) are zero for j > 2, then
El I... EIB(j) = B(j).

PROOF: This follows directly from successive application of Proposition 2. Therefore, if
B is lower triangular, the factored representation of B-1 may be stored in approximately the
same amount of core storage as B itself. In practice it is unneccessary to calculate the elements
I/PA and -/PA in Step 3 of ALG 1. It suffices to store k and the elements of' 3,. It may
prove advantageous to store 1/[PA, in addition. If Proposition 6 applies for B(k), then
)9 = B(k) and the only additional storage required is for the index k (and possibly U/3,)
Clearly, this results in substantial core storage savings compared to storing B 1 explicitly.

If B cannot be placed in lower triangular form, then it is placed in the form:

B'

where B' and B' are lower triangular matrices with non/eroes on their diagonals. We assume
that if B 2 is nonvacuous, every row and column has at least two nonzero entries, so that no
rearrangement of B2 can expand the sie of B1 or B'. B2 is called the hump setlon, the merit
section or the heart section. We further require the heart section to assume the following form

B2 F
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where Gk's are either vacuous or lower triangular with nonzeroes on the diagonal. The only
partitions in B having columns with nonzeroes above the diagonal are the Fk's which are called
external bumps. The columns extending above the diagonal are called spikes or spike columns.
An external bump is characterized as follows:

(i) the last column of an external bump will be a spike with a nonzero lying in the top-

most row of the external bump, and

(i) the nonspike columns have nonzero diagonal elements.

The algorithms of Hellerman and Rarick [5,61 produce such a structure for any nonsingular
matrix, and we shall call a matrix having this structure an HR matrix. It should be noted that if
one applies ALG I to an HR matrix, then the only columns which may require an interchange
are spike columns. We now prove that the only columns which need be considered for this inter-
change are other spikes in the same external bump.

Consider the following result:

PROPOSITION 7: Let B(i) with i > 2 correspond to the first column of some exteinal
bump, FK, and let B(j) be a spike in F. Then E'- ' ... E'B(j) - B(j).

PROOF: Note that the first i - I components of 8(j) are zero. Therefore, by successive
application of Proposition 2, the result is proved.

Note that Proposition 6 allows one to eliminate all of the calculation required in Step I of
ALG I for nonspike columns and Proposition 7 allows one to eliminate some of this calculation
for spikes. We now address the issue of spike swapping. Consider the following propositions:

PROPOSITION 8: Any spike B(j) which is not pivotable cannot be interchanged with a
spike B(k), k > j, from another external bump, to yield a pivotable column.

PROOF: Since B(k) is from an external bump lying to the right of the external hump
containing B(j), B,(k) = 0. By repeated application of Proposition 2, El I ... F!
B(k) - B(k). Thus B(j) cannot be interchanged with B(k) to yield a pivotable column.

PROPOSITION 9: Any spike B(j) which is not pivotable cannot be interchanged with a
nonspike column B(k), k > j, to yield a pivotable column.

PROOF: Let B(k), with k > j correspond to any nonspike column. From Proposition 6,
El-I... EIB(k) - B(k). Since the jth component of B(k) is zero, B(j) cannot be inter-
changed with B(k), to yield a pivotable column. We now present the main result of this note.

PROPOSITION 10: Any spike column B(j), which is not pivotable can be interchanged
with a spike, B(k), with k > j within the same external bump, to yield a pivotable column

PR(X)F: If 8(j) is not pivotable, then by Proposition 5 there exists a column B(A ) with
k > j which is pivotable. By Proposition 8, B(k) cannot be a spike from a different external
bump. By Proposition 9, B(k) cannot be a nonspike. Ilence B(k) must he a spike from the
same external bump.
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In practice, the zero check in step 2 is replaced by a tolerance check. Discussions of prac-
tical tolerance checks may be found in Benichou [I], Clasen (21, Orchard-Hays (71, Saunders
181, Tomlin (91, and Wolfe (101.
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ABSTRACT

Let H(t)P- ! ) (k), 0 < t < oo where A(f)/t is nonde-
_k-O

creasing in t, IP(k)"A.) is nonincreasing. It is known that 11(t) - I - H(t) is
an increasing failure rate on the average (IFRA) distribution, A proof based
on the IFRA closure theorem is given. H(t) is the distribution of life for sys-

tems undergoing shocks occurring according to a Poisson process where P(k ) is
the probability that the system survives k shocks. The proof given herein
shows there is an underlying connection between such models and monotone
systems of independent components that explains the IFRA life distribution oc-
curring in both models.

1. INTRODUCTION

In Barlow and Proschan 11, p. 931 a fairly general damage model is considered. A device
is subject to shocks occurring in time according to a Poisson process with rate A. The damage
caused by shocks is characterized by a sequence of numbers {P(k)), where P(k) is the proba-
bility that the device will survive k shocks. The P(k)'s as shown in [I] can arise in different
models. For example, the damage caused by the ith shock can be assumed to be a nonnegative
random variable A,, where X1, X2 ... are independent and identically distributed; failure of theA

device occurs at the kth shock if X,, the cumulative damage, exceeds a certain thres-

hold. In this case P(k) = Pr X, K< y. where y is the threshold. Ross 121 has failure occur-

ring when some nondecreasing symmetric function D(Xl ... X,) first exceeds a given thres-

hold; i.e., D(XI .... XA) is a generalization of X,. Here, P(k) - Pr {ID(X 1 . . ) y.
t-I

Let fi(i) denote the probability that the device survives in the interval [0, t]. Then

~AI(,jk,)A -I

k-0 k!

In Barlow and Proschan (I] (Theorem 3.6 p. 93) it is proven that if I( )' 1 is a nonincrea'ing
sequence then H(t) = I - fi(t) is always an increasing failure rate on the average (IFRA)

*Work supported in part by the Office of Naval Research under Contract N0X)14-75-0620 and the National Science
Foundation under (irant No MCS-7725-146 with Columbia University
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distribution function; i.e., -log Ht) is nondecreasing in t.
t

Ross [21, generalizes by allowing the Poisson process of successive shocks to be nonho-
mogeneous with rate function (t) such that

,A Wt_ X (s) ds

I t

is nondecreasing in t. That is, the same assertion can be made when Ht) is given by41
(1) HO ) e ()& P(k), 0 < t< o.

k-0 kr

The proof given in [11 is based on total positivity.arguments. Ross's technique for prov-
ing the IFRA result is obtained by making use of recent results [31 pertaining to what he calls
increasing failure rate average stochastic processes.

Our proof below shows that all such results are a consequence of one of the central
theorems of reliability theory, the IFRA Closure Theorem ([1] p. 83). This theorem asserts
that a monotone system composed of a finite number of independent components, each of
which has an IFRA life distribution, has itself an IFRA distribution.

It is remarked in 11, p. 91] that the coherent (or monotone) system model and the shock
models under consideration are widely diverse models for which the IFRA class of distribution
furnishes an appropriate description of life length, thus reenforcing the importance of the IFRA
class to reliability theory. The implication of our proof is that the models are not as widely
diverse as supposed.

The idea of the proof is the construction of a monotone system (of independent com-
ponents, each of which has the same IFRA life distribution) whose life distribution approxi-
mates H(it). The proof is completed by allowing the number of components in the system to
increase in an appropriate way so that the approximating life distributions converge to 11();
the IFRA property being preserved in the limit.

2. APPROXIMATING SYSTEMS APPROACH

For each m, m - I. 2 ... let S,,,, n - 1,2 ... he a monotone system of n independent
components. Let

(1) W =_(k) Pr (no cut set is formed I exactly k components of S, , are failed}

where all of the n components are equally likely to fail. (A cut set is a set of components such
that if all components of the set fail, the system does not function). Assume

(2) 5,,k) - 0, if k > m for every n,

(3) lir P, (k) - P,,(k), for every k

(4) lim Pj,(k) - P(k), for every k.

We can state
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THEOREM 1: If A (t) a 0, A () is nondecreasing and (2), (3) and (4) hold, then
t

H(t) - I - H(t) given by (1) is IFRA.

PROOF: Assume every component in S... is independent with life distribution
L(t) - I - e- A(')/ . Then every component has an IFRA distribution. Let Q,.,(k,t) denote
the probability that exactly k units fail within 10. fl. That is

(5) Q,,(k,:) e 11 en~J (e n~k

Let H,(t) denote the probability that S,,. works for at least t units of time, then

(6) -n(t) Q.., (kt)Pmn(k).
k-0

By the IFRA Closure Theorem, H,,(t) is IFRA.

However,

(7) H,(t) - lim H..(t)

- lim Q,,.,,(k~t)Pj,,(k)

k-0 n"°

e-A(')A (t)k

I - k! P.,(W- " 4 '~ k
k-0 e --A 10,4(t) k ,(,

by (2), the Poisson limit of binomial probabilities, and (3). Since the IFRAproperty is
preserved in the limit, H,(t) is IFRA. That is, since Hm(t) - lim H.,(t) and

-(log H,.,(t))/t is nondecreasing in t, then so is -(log H(t)/. However,
N e-Af

(
t)

lim H.(t) - e A()k lir P.(k)
k-0l A

" e A', - (k)A-fl k'

T1 D().

Since again the IFRA property is preserved in the limit, it follows that H(1) is IFRA, proving
the theorem.

We emphasize that the IFRA Closure Theorem is invoked only to show that that H,,,,(t)
is IFRA. The condition that A (t)/t is nondecreasing is needed so that all components of S,,.,
have an IFRA distribution.

3. APPLICATION OF THEOREM

The condition that (P(k)/1 is a nonincreasing sequence is not used in the proof nor does
it appear in the statement of Theorem I. That the condition is implicit is due to a recent
remarkable result of Ross, Shashahani and Weiss 141 that (P(k)"I is necessarily nonincreasing.
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To apply Theorem I for our purpose we must show

THEOREM 2: Let (P(k)) be any sequence such that 0 : P(k) < 1 and IP(k)/A) is
nonincreasing. Then there exist the monotone systems IS,,,) such that (2), (3), and (4) hold.

PROOF: Let 0P(k)) be any sequence with the hypothesized properties. Let F be any
increasing continuous distribution function over [0, -c) and jYk) the nonincreasing sequence of
nonnegative numbers such that

F(YA) - P(k)/, k - 1, 2,
For each m(m < n) let S,.., be a set of n components, i - I.... n. The cut sets are con-
structed in the following way. The ith component has an associated value x,, i - 1. n
where the values are assigned so that

# Iix, < x- In F(x)1, 0 < x < y ,

n,x > y I,

where # means "number of" and I I is the greatest integer designator. Every set of k com-
ponents is a cut set if k > m; if k < m a set (i. i) of components is a cut set if and
only if

max (x,, ... , x) > Yk.

Since IYk} is nonincreasing, Smn, is, indeed, a monotone set. But here,
A-' [nF(yA)l- i

P,(k) k < m
n

-0 k>m.

Thus,

P(k)- lim P,,,.,(k)

Fk(yk), if k < m

"0 ifk>m

and

lim P,,(k)- FA (yA.)

-T (k) . k - 1.2.

This proves Theorem 2.

Theorems one and two yield the slightly more general version of Theorem 3.6 1I, p. 931.

The Ross 121 generalization follows by defining the cut sets to be determined by a nonde-
creasing symmetric function D(x ..... xk). i.e., a set i ..... ih of components is a cut set of
Sm, if k > m or, if k < m, when D(x,, ..... xk,) > y, a given threshold value. From the
construction of Theorem 2, Theorem I and the result referred to in 141 it follows that the
sequence IP(k)) of this model satisfies the monotonicity condition. For the special case of
D(XI. Xk) - . X,, it is known that the sequence {IP(k)" is nonincreasing (see fil p.

96).
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Defense Systems Management College

Military Reservist Utilization Program

Military reservists from all U.S. Services now have a unique opportunity for a short tour
at the Defense Systems Management College, Ft. Belvoir Virginia. By volunteering for the
Reservist Utilization Program, an individual can increase proficiency training, maintain currency
in DOD Research, Development & Acquisition Policy, contribute to the development and for-
mulation of concepts that may become the bases of future DOD policy and help solve critical
problems facing the acquisition community.

Once accepted for the program, a reservist may be assigned to one of three areas:
research, education or operations. As a research associate, the individual researches and
analyzes an area compatible with his training and experience. Many reservists in this category
currently assist in the preparation of material for a comprehensive textbook on systems acqusi-
tion. The text will be used at DSMC by the faculty and students as well as by the systems
acquisition community. As an academic consultant, a reservist provides special assistance to
the College faculty by reviewing course material in his area of expertise and researching and
developing training materials. In the operations/administration category. reservists administer
the program by recruiting other reservists for the program, processing these reservists, and
maintaining files and records.

Because of the complexity and broad scope of the systems acquisition business, the Reser-
vist Utilization Program requires a large number of reservists from many diverse caleer fields.
Some examples of career fields used include: engineering, procurement, manufacturing, legal,
financial, personnel, administration and logistics. Reservists whose reserve duty assignments
are not in these types of career fields, but who have civilian experience in these areas, arc also
urged to apply.

Many reservists perform their annual tours with the Reservist I tilization Program otficc
Others perform special tours of active duty or "mandays." When tour dates are determined and
coordinated with your organization and the RUP office, submit the proper forrms through your
reserve organization at least 45 days prior to the tour date for an annual tour or 60) days for a
special tour.

To apply for active duty or to get additional information, telephone Professor Fred L-
Rosell. Jr. at commerical (703) 664-5783 or AUTOVON 354-5783. Reservists outside of Vir-
ginia may call on toll-free number (800) 336-3095 ext. 5783.
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CORRIGENDUM:

STOCHASTIC CONTROL OF QUEUEING SYSTEMS

Dr. A Laurinavicius of the Institute of Physical and Technic,d Problems of- Lnergeli",.
Academy of Sciences, Lithuania, USSR, has pointed out an error in the statement of lheorem
I of this paper [I. The expression for the generator given there is valid only for x > 0. andJ
different expression holds for x = 0, the proof for this case being similar. Moreover. the
domain of the generator can be extended. The correct statement is as follows.

THEOREM I: Let the function f(t,x) be continuous and such that the directional deriva-
tives

(1) D; f(r,x) lim f(t + h.x - 10 -0(x) > 0)1 , 0o+ ht

(2) D- f(t, 0) lim ( + h, 0) - f(,0) _+ (, 0)

where P = (1, - 1) and Q (1,0), exist, be continuous from one side and bounded. Then
the infinitesimal generator of the semigroup T7, is given by

(3) Af(t,x) = Dp'f(t,x) - Af(t,x) + X f(t,x + v)Btdv) for x > 0

= D o ](t.0) - hf(t, 0) + A f .f(t,v)B(av) for x = 0.

As a consequence of this error the example of Section 3 does not lead to the stated result.
A correct example is provided by the following. Let r(t), the revenue per unit time, and c().
the operating cost per unit time, be given by

r(t)= rfor0< t( to, and=0 fort > t0

c W)= cI for 0 < t < to, and = C2 for t > to.

The profit from operating the system up to a time Tis given by f(T, Wr, where

(4) f(t,x) = r min(t,t0 ) - Ctto - o2 max (0,t 4 x - to).

This leads to the following correct version of Theorem 3.

THEOREM 3: Let W, = w < to and assume that

(5) X C ,, 11 B(v)idv < r < Xc29

where 3 is the mean service time. Then the optimal time is given by

(6) T,= inf{t > 0: t + W, > a)

where a is the unique solution of the equation

(7) X- 2 f , - B(v)]dv- r.
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PROOF: It is found that for x > 0
o [f(tx + v) - f(t,x)IB(dv) - -c 2 f__,_ [I- B(v)]dv

where (to - t - x)= max (O,to - t - x). Also,

D)p f(t,x) - r for t < to, and= 0 for t > t(, (x > 0)

Do f(t.0)= r for t < to, and = -c 2 for t > to.

Therefore, the generator in this case is given by

Af(t,x) = r - Xc' 2  [1- B(v)ldv for t < to, x >, 0

=-X2 fort > t 0 , x > 0
(8) =c 2 -c 2J3 for t > 1, x=0.

In applying Theorem 2 we note that Af(t,x) < 0 for t > to, x > 0, so it suffices to consider
Af(t,x) for t < to, x > 0. We can write

Af(,x) - 0(t +x) for t < to, x >, 0,
where

(9) - W) = r - XC2 fo_,o+ [I- B(v)ldv.

We have

00- r- c 2 f 1- B(v)dv > r - Ac 2 f [1 - B(v)ldv > 0
00(to) -= r- X-C21 < 0

on account of (5). Also, 0,(t) is a decreasing function of t. Therefore, there exists a unique
value asuch that 0(t) > 0for 0 < t < aand t) < 0 for a < t < to. Since (t) < 0 for
t > to, we have 0(W K< 0 for i a. This means that Af(0,x) < 0 for t + x >, a, so the set
R of Theorem 2 is given by R - {(tx): t + x > a}, and the time of the first visit to R is
given by (6). Since the process t + W, is monotone nondecreasing with probability one, the
set R is closed. Moreover, Ta < a with probability one and also Ef.T0) < -c. Thus, the condi-
tions of Theorem 2 are satisfied, and Ta is optimal at W0 = w, as was required to be proved.

A particular case. Let B(x) = I - e -' x (x > 0, 0 < Mu < cc). The conditions (5) reduce
to

(10) w < 10 -- log c 2 l < to

and the Equation (7) gives

(11) a - to - log C2

On account of (11) we have a > w.
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